TOMORROW starts here.

जीव्यक्ति **CISCO**

Introduction to Solid State Storage Systems

BRKCOM-1601

James Candelaria Director of Engineering Solid State Systems Group

Session Agenda

- **History and Background**
	- Block Storage Connectivity
	- Comparisons
	- NAND Overview
- **Managing RAW Media deficiencies**
- **Implementation Techniques**
- **Use Cases**

BRKCOM-1601 **Example 2014 Cisco and/or its affiliates.** All rights reserved. Cisco Public

 $Ciscolive!$

History and Background

Blocks and Protocols

■ Protocols

- SCSI
- $-$ ATA
- **Transports**
	- Parallel
	- Serial
	- Fibre Channel
	- $-$ IP

■ Blocks

- Lots of sizes
- 512 Bytes +

Server I/O Systems

- PCI/PCI-x
	- Shared Parallel Bus
	- PCI 32 Bit 33/66Mhz, 64 Bit 33/66Mhz
	- PCI-x 64 Bit 66-533Mhz
- PCIe
	- Serial, point-to-point
	- 128b/130b (PCIe 3) encoding
	- 8GT/s per lane ~980 MB/s

Solid State Memory History

- **Solid state memory isn't new**
	- Core memory (1955-1975)
		- Polarised magnetic rings
		- **Poor density w/ destructive READ**
	- RAM (SRAM/DRAM) (BC-> Present)
		- \blacksquare Fast
		- Volatile
		- Poor density
	- NOR/NAND Flash (1980-> Present)
		- **High density (NAND), Fast READ**
		- Poor endurance, poor write performance, error prone (NAND)

BRKCOM-1601 **Case Community** Case of 2014 Cisco and/or its affiliates. All rights reserved. Cisco Public

Comparison with Hard Disk Tech

- **Hard disks have poor** *random* performance, due to head movement
	- 15,000 RPM 200 IOPS / drive
	- 10,000 RPM 150 IOPS / drive
	- 7,200 RPM 100 IOPS / drive
- **Solid state memory has excellent random READ** performance
	- SSD 50,000 IOPS / drive

Basic NAND Cell Construction

- NAND cell stores data inside of a floating gate
- **Strings of cells are organised together to form a** "page"
- **Pages are grouped together to create a block**
- **Pages include spare area for error correction**
- **Pages are independently programmable, but not** independently erasable

Reading Data

- Current is applied to the control gate, depending on the potential of the floating gate, current may or may not flow reflecting a binary value.
- Unlike DRAM, READ is non destructive and does not disrupt the charge of the floating gate*
- \blacksquare * Repetitive reading of cells in a block may introduce errors in surrounding blocks known as "readdisturb"

Cell Programming / Erase

- NAND cells are programmed and erased by placing a high voltage between the source, drain, and control gate forcing electrons through the oxide layer and into or off the floating gate.
- **Programming and erasing cells is a** destructive process: silicon doping, weakening of the insulating layer, etc
	- Endurance gets worse as the cell shrinks due to fewer electrons in the floating gate smaller insulators, and other cells in closer proximity

NAND Cell Types

- SLC Single Level Cell (1 bit per cell)
	- High endurance (30,000 cycles @ 20nm)
	- High speed
	- High cost per bit
- MLC Multi Level Cell (2 bits per cell)
	- Lower endurance (3,000 cycles @ 20nm)
	- Moderate speed
	- Much lower cost per bit
- eMLC Enterprise MLC (2 bits per cell)
	- Moderate endurance (10,000 cycles)
	- Slower program speed than SLC
	- Higher cost per bit than MLC

- TLC Triple Level Cell
	- LOW endurance (500-1500 cycle)
	- Slower program time
	- Ultra low cost per bit

Ciscolive!

Managing the Deficiencies of the RAW Media

Controllers

- Raw NAND unsuitable for direct consumption due to error rates / programming issues
- NAND controllers provide:
	- FTL
		- Wear leveling
		- **Garbage collection**
		- **Error detection / correction**
		- **Bad block management**
	- Write amplification management
		- OP
		- Deduplication / Compression
	- Host interface
		- **PCIe, SATA, SAS, NVMe, etc**

Flash Translation Layer

- **Provides sector to NAND page translation**
	- Block device (SATA/SAS/NVMe) is addressed in LBA
	- FTL converts LBA to NAND location
- **Tracks used and "free" pages / blocks**
	- Blocks can be freed from host issuing TRIM or overwrite
- **Typically runs on embedded processor on**
	- Limited system resources
		- **Low clock frequency**
		- **Limited DRAM**
- **FTL typically log structured**
	- Data is written only to free pages

FTL – Wear Leveling

- **Individual flash cells have specific endurance**
- **To decrease failure controller and FTL can use both dynamic and static wear** leveling
	- Dynamic
		- LBA overwrite results in flash page invalidation, new write in free page with lowest age
		- Old block age considered during garbage collection and new writes
		- Static data (system files, old documents, etc) NEVER eligible for wear leveling
		- Simple
		- **In-line operation**
	- Static
		- Controller moves pages with static data to new locations after thresholds are met
		- Complex
		- Background operation

FTL – Garbage Collection

- **Dynamic wear leveling leaves stale pages/blocks on device**
- **Exentually all blocks/pages are in use**
- GC collects all valid pages and consolidates
	- Freeing blocks for erasure
- **Controller can pre-erase blocks after GC**
	- Enhance performance
- **Background process**
	- Enhanced by TRIM but not required

Pre GC Example "Dirty Media"

Post GC Move

BRKCOM-1601 Cisco and/or its affiliates. All rights reserved. Cisco Public

Post GC Move Pre-erase

Controller – Error Detection

- NAND is error prone
	- Programming errors raise vT
	- Read distrub
	- Noisy bus
- **Two ratings**
	- $-$ rBER
	- uBER
- **Controllers reserve spare area on page for ECC**
	- BCH / LDCP
		- **Possible but unlikely undetected errors**
	- Correction performed when computed hash doesn't't match hash in spare area

Controller – Error Correction

- **Correction performed when computed hash doesn't** match hash in spare area
	- Read retry with different vT settings
		- **Requires deep knowledge of NAND properties**
	- Traditional correction with BCH/LDCP
	- Combination of techniques
- Advanced error correction can increase usable PE count of blocks 10x
	- DSP technology

Controller – Bad Block Management

- **Blocks past endurance limits may not erase completely**
- **Blocks with high rBER may be unreliable**
- **Example Controller MUST track above at BLOCK level**
	- Non fully erased blocks may continue to be used with error correction
	- High rBER cells must be retired or resort to higher levels of ECC

Controller – Write Amplification Mgmt

- When NAND is FULL, new writes require an ERASE of a block.
	- Small writes (4-8K) can result in MB of writes
- Write coalescing
	- DRAM caches can aggregate inbound writes to avoid small write commits
		- **Delays the issue**
	- Compression and dedupe
		- Reduces the amount of data on media
- **Intelligent GC**
	- Maintains enough free blocks to avoid forced erase

Controller – Host Interface

Controllers must provide an interface to the NAND

- PCIe
	- Proprietary
		- Requires custom driver for every OS
		- Controller functions can be offloaded into driver software
	- SATA/SAS bridge
		- **PCIe card uses SAS HBA chip**
	- NVMe
		- **Elimination of SCSI as transport layer for decreased latency**
- SATA/SAS
	- Highest compatibility
	- Straightforward integration
	- Performance compromise*

RAID

- Enterprise systems require data availability (DAS included)
	- Mirroring (RAID 1 & 10)
		- **Expensive**
		- **Effective with HDD due to low cost per bit and offers excellent READ and good write perf**
	- Parity based (RAID 4,5,6)
		- **Severe performance compromise on write**
		- **Much less expensive (\$/GB)**
		- **Exasperates write amplification on flash**

- Despite good controller design, random write performance and write amplification is a challenge for the best controller. Best case performance can be achieved with
	- Sequential fixed length IO
	- Never writing less than an entire erase block
- Parity based RAID requires full stripe writes to avoid the read/modify write issue
	- 24 drive RAID6 can require 21 reads and 3 writes for a short stripe write
	- Solution: Always write full stripes

 $Ciscolive!$

Flash Implementation Approaches

Flash as a Cache

- **Large NAND read cache in traditional array**
	- Acceleration of "second read"
		- **Inconsistent performance for enterprise apps**
	- Pushes limits of controllers
		- Media can service more IO than host CPUs can handle interrupts
	- Solves only half (or less) of the problem
- Read + writeback cache
	- Challenges with NAND as described earlier require intelligent design
		- **Typically front end many TB or PB**
			- Must absorb EVERY write
			- Requires high endurance SLC
	- Typically limited in size
		- **Over-run of cache flushes at media rate**
			- Destage is the bottleneck, cache often full due to backing media perf

Flash Array Design Concerns

- CPU / Memory requirements differ from traditional array
	- Flash management techniques required
	- Interrupt bound performance
- **Advanced services**
	- Deduplication
	- Compression
- Scalability
	- Difficult to exploit all aspects of flash
- Cost management
	- Parity based RAID?

 $Ciscolive!$

The Cisco Invicta Approach

Introducing the Cisco UCS Invicta Series

Simplify Your Life with Flash

UCS INVICTA Series OS

Leverage the advantages of flash while mitigating the issues

Receive

•Data blocks of Various size arrive from Hosts from network interconnects

Protect

•Data Blocks are stored in the power loss buffer and passed onto the Block Translation Layer (BTL)

Optimise

- •The Block Translation Layer Aggregates and sizes Data Blocks for the RAID Layer and Flash Media
- •Hash tags are created for each block

Commit

•BTL Optimised Data is flushed across the RAID stripe and Flash erase blocks concurrently

Block Translation Layer

- **Log structured write IO**
	- Long linear chains
- **Erase block aligned**
	- Large sequential IO to RAID layer
	- RAID chunks combine at device NCQ buffer
- Data integrity validation
	- Every 4K PBA can be validated
	- Granular stripe level repair
- Non-Volatile staging
	- Super capacitor backed DRAM
- **Backed by high horsepower CPU and memory**
	- -10 core $x86 + GB$ of DRAM
- Data reduction

BRKCOM-1601 **Case Community** Case of 2014 Cisco and/or its affiliates. All rights reserved. Cisco Public

UCS INVICTA Series OS

Optimisation = High Performance

BRKCOM-1601 Cisco and/or its affiliates. All rights reserved. Cisco Public

Invicta Scale Up and Out

- **Flash management implemented at node level**
	- Never bottlenecked
	- Consistent linear performance
- **Fabric services implemented at "router" level**
	- Multiple routers can provide fabric attach, availability and data-services

 $Ciscolive!$

Use Cases Today

- Virtual desktops are HARD to service for traditional storage
	- Thousands of users
	- Write dominant
	- IO blender
	- Extremely burst sensitive
- Sessions need to be considered "interactive"
	- Every delay hurts user experience
	- Users already gave up device control
		- Wont tolerate unpredictable performance
- **IOPs and latency is king**

Traditional SQL

SQL Server, Oracle etc

- **DBAs are used to "tuning for storage"**
	- Required due to lack of "performance by default" with hard disks
	- Complex RAID group management, stripe configuration, write caches, etc
- Well architected flash allows for "performance by default"
	- tempDB, transaction logs, and database files on the SAME RAID group
	- Organisation and separation is only required for administrative purposes
- Results can be dramatic
	- Many database customers report batch runtime reduction of > 10x
	- Ability to create make critical business decisions on LIVE data instead of lagging indicators

Fast Data

Real-time NoSQL

Fast store/retrieve

- Unstructured Data tweets, sensor data, clickstream
- Data typically stored and retrieved as key-value pairs in flexible column families
- High transaction rates, many reads and writes, small block/chunk sizes (1K-1MB)
- Less well-suited for ad-hoc analysis than Hadoop
- TB to PB scale

Batch-oriented Hadoop

Heavy lifting, processing

- Unstructured Data emails, syslogs, clickstream data
- Optimised for large streaming reads of large blocks (128-256 MB) comprising large files
- Dynamic schema effectively applied on read
- Optimised to compute data locally at cost of normalisation
- Write once, read many
- Linear scaling to thousands of nodes and tens of PB
- Entire data set at play for a given query

MPP Relational Columnar Database

"Scale-out BI/DW"

- Structured Data
- Optimised for DW/OLAP, some OLTP (ACID-compliant)
- Data stored via frequentlyaccess columns rather than rows for faster retrieval
- Rigid schema applied to data on insert/update
- Read and write (insert, update) many times
- Somewhat limited linear scaling
- Queries often involve a smaller subset of data set vs. Hadoop
- TB to low PB size

UISCO

Read and Write Caches

Inside hypervisors and operating systems

- Cache is everywhere
	- L1/L2/L3 in the processor
	- DRAM on the OS
	- DRAM on the array
- Cache is usually volatile
	- Write cache MUST be protected
		- **If you ACK the write you MUST have it on stable media**
- Cache is a crutch
	- Read cache exists to avoid reading a slow persistent datastore
	- Write cache exists to avoid delaying an application response
	- The faster you make the media, the less you need the crutch
	- Poorly designed systems can have a 100x performance variance for a cache miss

Summary

- **Flash is NOT disk**
- Flash has unique strengths
	- Low latency READ
	- Low power
	- Media stability
- **Flash has unique weakness**
	- Random write performance
	- Endurance
	- Data retention
- **Successful implementation requires unique design**
	- Leverage the strengths
	- Mitigate the weakness

 c isco $\mathsf{l}\mathsf{i}\mathsf{v}\mathsf{e}\mathsf{f}'$

Q & A

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations. [www.CiscoLiveAPAC.com](http://www.ciscoliveapac.com/)

CISCO.