TOMORROW starts here.

11 11 11 CISCO

UCS Networking – Deep Dive

BRKCOM-2003

Sarva Chakravarthi Cisco Services

UCS LAN Deep Dive - Agenda

- High-level System Overview
- Fabric Forwarding Mode of Operations
- Uplink Pinning
- Chassis / Fabric Extender
- Server Connectivity Options
- Recommended Topologies
- C-Series Integration

BRKCOM-2003

Cisco (ive,

High-level System Overview

4

System Components: High-level Overview

UCS Fabric Portfolio

UCS Fabric Interconnect

UCS Fabric Interconnect – UCS 6248

- 1RU
- 32 unified base ports and 1 expansion slot
- Line rate 960Gbps

Interconnect)

UCS Fabric Interconnect – UCS 6296

- 2RU
- 48 unified base ports and 3 expansion slots
- Line rate 1920 Gbps

UCS IO Module (IOM) – 2204 or 2208

4 or 8 10GbE fabric links (to Fabric

16 or 32 10GbE server links (to servers)

Nexus 2232PP or Nexus 2232TM

- 8 10GbE fabric links (to Fabric Interconnect)
- 32 10GbE server links (to servers)

UCS VIC1240 plus Pass-through (PT) Expansion Card - Blades

- VIC1240: Up to 4 x 10 GbE
- PT: Expands VIC1240 up to 8 x 10GbE
- Up to 256 vPCle

UCS VIC Adapters

UCS VIC 1280 - Blades

- Up to 8 x 10GE ports
- Up to 256 vPCle

UCS VIC 1225 - Racks

- Up to 2 x 10GE ports
- Up to 256 vPCle

Cisco UCS 6200 Series Fabric Interconnects

	Product Features and Specs	UCS 6248UP
	Switch Fabric Throughput	960 Gbps
Flexibility	Switch Footprint	1RU
	1 Gigabit Ethernet Port Density	48
	10 Gigabit Ethernet Port Density	48
Scalability	8G Native FC Port Density	48
	Port-to-Port Latency	2.0us
N /1 14:	# of VLANs	4096*
nurpose	Layer 3 Ready (future)	 ✓
	40 Gigabit Ethernet Ready (future)	~
	Virtual Interface Support	63 per Downlink
	Unified Ports (Ethernet or FC)	

*1024 with current 2.1 release

BRKCOM-2003

UCS 6248: Unified Ports Dynamic Port Allocation: Lossless Ethernet or Fibre Channel

- Ports on the base card or the Unified Port GEM Module can be Ethernet or FC
- Only a continuous set of ports can be configured as Ethernet or FC
- Ethernet Ports have to be the 1st set of ports
- Port type changes take effect after next reboot of switch for Base board ports or power-off/on of the GEM for GEM unified ports.

	GEM – 16 Unified Ports		
Eth FC Eth FC			

Generic Expansion Module (GEM) Unified Port GEM for UCS 6200 Series

UCS-FI-E16UP

- 16 "Unified Ports"
- Ports can be configured as either Ethernet or Native FC Ports
- Ethernet operations at 1/10 Gigabit Ethernet
- Fibre Channel operations at 8/4/2/1G
- Uses existing Ethernet SFP+ and Cisco 8/4/2G and 4/2/1G FC Optics

Unified Port Screen

- Configured on a per FI basis
- Slider based configuration
- Reboot is required for the new port personality to take into affect
- Recommendation is to configure GEM card, therefore GEM is only needed to be rebooted

Configure Unified Ports			X
Unified	I Computing	System Manager	
Configure Base	Card		Ø
California (AP) (AP) (AP) (AP) (AP) Citado Citado AP) (AP) (AP) (AP) (AP) AP) (AP) (AP) (AP) (AP) AP) (AP) (AP) (AP) (AP) AP) (AP) (AP) (AP) (AP) AP) (AP) (AP) (AP) (AP) (AP) AP) (AP) (AP) (AP) (AP) (AP) (AP) AP) (AP) (AP) (AP) (AP) (AP) (AP) (AP) AP) (AP) (AP) (AP) (AP) (AP) (AP) (AP) (
4⊈ Unconfigured 4€ FCoE Storage 4€ Uplink	#☐ Uplink ₩☐ Monitor Port ₩☐ Storage	Image: Server Image: Server Image: Server I	Appliance Appliance Port Channel Member Port Channel Member
		Configure Base Card	M Card Finish Cancel
	© 2014 Ciano and/ar ita affili	aton All righta reported	Ciaco Bublio

Logical Architecture

Abstracting the Logical Architecture

Physical

Logical

Cisco live;

Fabric Forwarding Mode of Operations

Fabric Forwarding Mode of Operations Modes of Operation

End-host mode (EHM): Default mode

- No spanning-tree protocol (STP); no blocked ports
- Admin differentiates between server and network ports
- Using dynamic (or static) server to uplink pinning
- No MAC address learning except on the server ports; no unknown unicast flooding
- Fabric failover (FF) for Ethernet vNICs (not available in switch mode)
- Switch mode: User configurable
 - Fabric Interconnects behave like regular ethernet switches
 - STP parameters are lock

End Host Mode

- Completely transparent to the network
 - Presents itself as a bunch of hosts to the network
- No STP simplifies upstream connectivity
- All uplinks ports are forwarding – never blocked

End Host Mode Unicast Forwarding

- MAC/VLAN plus policy based forwarding
 - Server pinned to uplink ports
- Policies to prevent packet looping
 - déjà vu check
 - RPF
 - No uplink to uplink forwarding
- No unknown unicast or multicast
 - igmp-snooping can be disable on per-VLAN basis

End Host Mode Multicast Forwarding

- Broadcast traffic for a VLAN is pinned on exactly one uplink port (or port-channel) i.e., it is dropped when received on other uplinks
- Server to server multicast traffic is locally switched
- RPF and déjà vu check also applies for multicast traffic

Switch Mode

- Fabric Interconnect behaves like a normal L2 switch
- Rapid-STP+ to prevent loops
 - STP parameters are not configurable
- Server vNIC traffic follows STP forwarding states
 - Use VPC to get around blocked ports
- VTP is not supported
- MAC address learning on both uplinks and server links

Ciscolive!

Uplink Pinning

End Host Mode - Dynamic Pinning

- UCSM manages the vEth pinning to the uplink
- UCSM will periodically vEth distribution and redistribute the vEths across the uplinks

Cisco Public

End Host Mode – Individual Uplinks

✓ No STP

End Host Mode – Port Channel Uplinks

End Host Mode – Static Pinning

Administrator Pinning Definition

vEth Interfaces	Uplink
vEth 1	Blue
vEth 2	Blue
vEth 3	Purple

- Administer controls the vEth pinning
- Deterministic traffic flow
- Pinning configuration is done under the LAN tab -> LAN Pin groups and assigned under the vNIC
- No re-pinning with in the same FI
- Static and dynamic pinning can coexist

Cisco Public

Cisco (ive,

Chassis / Fabric Extender

UCS Fabric Topologies Chassis Bandwidth Options

What are Those IOMs?

- A IOM (sometimes called 'Fabric Extender') provides
 - A 1GE switch used for internal management (1GE per slot)
 - A number of 10G-KR sever facing links (HIF)
 - A number of Fabric links (NIF)
- NIC cards on the servers use those HIF ports for external connectivity
- Each IOM provides a separate dedicated IO channel for internal management connectivity
- There is no local switching on IOMs traffic is always switched by the FIs

Let's go back in time a bit...

So this is what we had with the 2104XP

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public

Today: UCS 2204 IO Module Dual 20 Gbps to Each Blade Server

UCS-IOM-2204XP

- Bandwidth increase
 - 40G to the Network
 - 160G to the hosts (redundant)
 - (2x10G per half-width slot; 4x10G per Full-width slot)
- Latency Lowered to 0.5us within IOM
- Investment Protection with Backward
 Compatibility

UCS 2208 IO Module Enable Dual 40 Gbps to Each Blade Server

UCS-IOM-2208XP

- Bandwidth increase
 - o 80G to the Network
 - o 320G to the hosts (redundant)
 - (4x10G per half-width slot; 8x10G per full-width slot)
- Latency Lowered to 0.5us within IOM
- Investment Protection with Backward
 Compatibility

220x-XP Architecture

2208 FLASH 2204 DRAM EEPROM 🗲 Control Chassis Management Woodside ASIC 10 Controller Switch 2204 Chassis Signals 2208 Internal backplane ports to blades No Local Switching – ever! Traffic goes up to FI

Fabric Ports to FI

Feature	2204-XP	2208-XP	
ASIC	Woodside	Woodside	
Fabric Ports (NIF)	4	8	
Host Ports (HIF)	16	32	
CoS	8	8	
Latency	~ 500ns	~ 500ns	

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public

Blade Northbound Ports

- These interfaces (show int brief NXOS shell) are backplane traces
- Eth x/y/z nomenclature where
 - x = chassis number
 - y = is always 1
 - z = host interface port number

Ethernet Interface	VLAN	Туре	Mode	Status	Reason	Speed	Port Ch #
Eth1/1/1	1	eth	access	down	Administratively do	 wn 10G(D)	
Eth1/1/2	1	eth	access	down	Administratively do	wn 10G(D)	
Eth1/1/3	1	eth	access	down	Administratively do	wn 10G(D)	
Eth1/1/4	1	eth	access	down	Administratively do	wn 10G(D)	
Eth1/1/5	1	eth	access	down	Administratively do	wn 10G(D)	
Eth1/1/6	1	eth	access	down	Administratively do	wn 10G(D)	
Eth1/1/7	1	eth	access	up	none	10G(D)	
Eth1/1/8	1	eth	access	up	none	10G(D)	
[th1/1/9	1	eth	trunk	up	none	10G(D)	
all-spring	-В#	© 2	014 Cisco and/	or its affiliates All	rights reserved	Cisco Public	

UCS Internal Block Diagram

IO Module HIF to NIF Pinning 2208XP – 1 Link

IO Module HIF to NIF Pinning 2208XP – 2 Link

IO Module HIF to NIF Pinning 2208XP – 4 Link

IO Module HIF to NIF Pinning 2208XP – 8 Link

IOM and Failover

- What happens in a 4-link topology when you loose 1 link?
 - Server interfaces pinned to that link go down*
 - The remaining 3 links still pass traffic for the other blade servers
 - To recover the failed servers' vNICs, re-acknowledged of the chassis is required
 - After a re-ack UCS falls back to 2 links with regards to blade to fabric port mapping
 That's because the link count must be a power of 2!

* unless you enabled Fabric Failover

IOM and Failover

Increased Bandwidth Access to Blades

Ciscolive

© 2014 Cisco and/or its affiliates. All rights reserved.

Port-channel Pinning

- No slot based pinning
- No invalid link count for NIF ports (no "power of 2" rule)

Port-channel Pinning

© 2014 Cisco and/or its affiliates. All rights reserved.

Ciscolive!

Server Connectivity

Let's go back in time once more

UCS Cisco 1280 VIC Adapter

Customer benefits

- Dual 4x 10 GE (80 Gb per host)
- VM-FEX scale, up to 112 VM interfaces /w ESX 5.0

Feature details

- Dual 4x 10 GE port-channels to a single server slot
- Host connectivity PCIe Gen2 x16
- PCIe Gen 2 x16 bandwidth limit is 32 Gbps
- HW Capable of 256 PCIe devices
 - OS restriction apply
- PCIe virtualisation OS independent (same as M81KR)
- Single OS driver image for both M81KR and 1280 VIC
- FabricFailover supported
- Eth hash inputs : Source MAC Address, Destination MAC Address, Source Pprt, Destination Port, Source IP address, Destination, P address and VLAN
- FC Hash inputs: Source MAC Address Destination MAC Address, FC SID and FC DID

Connectivity IOM to Adapter

Up to 32 Gbps (PCIe speed) throughput per vNIC using flow based port-channel hash

- Implicit Port-channel between UCS 1280 VIC adapter and UCS 2208 IOM
- 7-Tuple Flow based hash
- A vNIC is active on side A or B.
- A vNIC has access to up to 32 Gbps throughput .

What does the OS See?

ault Summary			• • • • • • • • • • • • • • • • • • •		بالدالد.	
	🕒 🔍 🖬 New 🔪 💆	Options 0	Pending Activities	5 🛛 🖸 Exit	CISCO	
4 7 4	>> 🥪 Servers 🕨 🖑 Serv	ice Profiles 🕨 🎄 ro	oot 🕨 🎪 Sub-Organizations	; 🕨 🙏 cpaggen 🕨 🍮 Service Profile B200	D-M3-VIC1240_PE 🕨 📲 vNIC:	1 🕐
auipment Servers LAN SAN VM Admin	General VNIC Interfaces	Statistics Faults	Events			
Filter: All	Fault Community		Dresertise			
			Propercies			
± =				Name: e1		
Servers		X		MAC Address: 00:25:85:99:00:07		
			etwork Connection Deta	ils	×	
			Network Connection Details	:	ol-cpaggen_MACs	
⊕; Connection			Property	Value	Enable Failover	
IPv4 Connectivity:	No Internet access		Connection-specific DN	ucslab.cisco.com		
IPv6 Connectivity:	No Internet access	te	Description Physical Address	Cisco VIC Ethernet Interface #2 00.25.85.99.00.06		
Media State:	Enabled		DHCP Enabled	Yes	-1/host-eth-2	
Speed:	40.0 Gbps		IPv4 Address	192.168.66.100		
Detaile			IPv4 Subnet Mask	255.255.255.0 Tuesdau September 04, 2012 7:19:12 &		
			Lease Expires	Wednesday, September 04, 2012 7:20:11 Wednesday, September 12, 2012 7:20:11		
			IPv4 Default Gateway			
Activity			IPv4 DHCP Server	192.168.66.1		
	N		IPv4 WINS Server	132.100.00.234		
Sent —	Received		NetBIOS over Topip En	Yes	_	
Bytes: 2 496.676	1.859.456		Link-local IPv6 Address	fe80::8127:294f:d507:2603%13		
2,100,010	1,000,000		IPv6 DNS Server		s Reset Values	
Properties 👔 Dicable	Diagnose					
Logged in as				P	: 2012-09-06T12:11	
	Class.			Close	1	1
	Close			61030		

Fabric Failover End Host Mode (only)

- Fabric provides NIC failover capabilities chosen when defining a service profile
- Traditionally done using NIC bonding driver in the OS
- Provides failover for both unicast and multicast traffic
- Works for any OS on bare metal and hypervisors

© 2014 Cisco and/or its affiliates. All rights reserved.

Fabric Failover Bare Metal OS

© 2014 Cisco and/or its affiliates. All rights reserved.

IOM 2104 with M81KR in M1/M2 Blades

IOM 2104 with VIC 1280 in M2 Blades

IOM 2208 with M81KR in M1/M2 Blades

IOM 2208 with VIC 1280 in M2 Blades

IOM 2204 with M81KR in M1/M2 Blades

IOM 2204 with VIC 1280 in M2 Blades

UCS B200 M3

BRKCOM-2003

Cisco Public

© 2014 Cisco and/or its affiliates. All rights reserved.

B200 M3 I/O Block Diagram Modular LOM and Mezzanine slot

Introducing UCS VIC 1240 Modular LOM

- □ Based on Sereno ASIC (VIC 1280 uses the same ASIC)
- PCIe Devices 256 (vNICs or vHBA)
 - Support VM-FEX
 - Base option supports dual 2x10Gb (2 lanes to each FI)

Port Expander Card for VIC 1240

- Option to enable all port of 2nd Gen VIC ASIC (Sereno)
- 4 ports to each FI
- □ Fits in the Mezzanine slot of B200M3
- Port Expander has no PCIe presence
- □ It is a "passive connector" device

B200 M3 I/O Block Diagram VIC 1240 and Port Expander Card for VIC 1240

Backplane Lanes for B200 M3

IOM 2208 with VIC1240 in B200M3

IOM 2208 with VIC1240 & Port Expander in B200M3

Full BW of 2nd Gen VIC ASIC exposed

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public

Cisc

IOM 2208 with VIC1240 & VIC 1280 in B200M3

IOM 2204 with VIC1240 in B200M3

Topology Designs For Maximum Bandwidth

- Shared IOM uplink bandwidth of 10Gbps
- vNIC Burst up to 10Gbps
- Shared IOM Uplink with 1
 server
- Host port pinned to a discrete IOM uplink

UCS 6248UP

Shared IOM uplink bandwidth of 80Gbps

٠

- vNIC Burst up to 10Gb
- Shared IOM Port-Channel with 8 servers
- Host port pinned to a discrete IOM port-channel

- Dedicated IOM uplink bandwidth of 10Gbps
- vNIC Burst up to 10Gbps *(IOM uplink limitation)
- Dedicated IOM Uplink
- Host port-channel pinned to discrete IOM uplink

- Shared IOM uplink bandwidth of 80Gbps
- vNIC Burst up to 32Gbps *(PCIe Gen 2 limitation)
- Shared IOM Port-Channel with 8 servers
- Host port-channel pinned to the IOM port-channel Cisco

Ciscolive!

Virtual Interfaces (VN-TAG)

How Do Servers Communicate?

- We know servers with one mezz card present two (M81KR and non-Cisco adapters) or 2 x (4 x 10G) Base-KR 'external' or 'northbound' interfaces
- The OS knows nothing of this
- The OS sees PCI devices on the bus and loads device drivers for those devices
 - In UCS, the Service Profile controls the interfaces the OS sees
 - E.g.: a blade can be shown 6 x 10GE NICs and 2 x HBAs while another sees 8 x 10GE NICs and no HBAs
- This means the northbound physical interfaces between the adapter and the IOM can carry both Ethernet and FC traffic for several vNICs. We need a mechanism to identify the origin server
 - \rightarrow Concept of Virtual Interface or VIF (see next slide)

Server Interface Virtualisation (Adapter FEX)

VN-Tag: Instantiation of Virtual Interfaces

- Virtual interfaces (VIFs) help distinguish between FC and Eth interfaces
- They also identify the origin server
- VIFs are instantiated on the FI and correspond to frame-level tags assigned to blade mezz cards
- A 6-byte tag (VN-Tag) is preprended by Palo and Menlo as traffic leaves the server to identify the interface
 - VN-Tag associates frames to a VIF
- VIFs are 'spawned off' the server's EthX/Y/Z interfaces (examples follow)

VN-Tag at the Adapter (Mezz Card) Level

Hardy-the-new-l# connect adapter 1/1/1														
adapter 1/1/1 # connect														
adapter 1/1/1 (top):1# attach-mcp														
adapter 1/1/1 (mcp):1# '	apter 1/1/1 (mcp):1# vnic													
vnic id : interna	: internal id of vnic, use for other vnic cmds													
vnic name/mac : ucsm pr	: ucsm provisioned name (-n) or mac address (-m)													
vnic type : enet=et	: enet=ethernet, enet_pt=dynamic ethernet, fc=fcoe													
vnic bb:dd.f : host pc	: host pci bus/device/function id													
vnic state 🛛 : state o	: state of vnic													
lif : interna	: internal logical if id, use for other lif/vif cmds													
lif state : state o	: state of lif													
vif uif : bound u	: bound uplink 0 or 1, =:primary, -:secondary, >:current													
vif ucsm : ucsm id	: ucsm id for this vif													
vif idx : switch	: switch id for this vif													
vif vlan : default	: default vlan for traffic													
vif state : state o	: state of vif													
vnic					 v i f									
id name type	bb:dd.f state	lif state	uif	ucsm	idx	vlan	state							
5 vnic_1 enet	08:00.0 UP	2 UP	- 0	970	860	1	UP							
			=>1	969	873	1	UP							
6 vnic_2 enet	09:00.0 UP	3 UP	- 0	972	861	1	UP							
			=>1	971	874	1	UP							
7 vnic_3 enet	0a:00.0 UP	4 UP	- 0	974	862	1	UP							
			=>1	973	875	1	UP							
adapter 1/1/1 (mcp):2#														

Cisco live!
VIFs

- Ethernet and FC are muxed on the same physical links → concept of virtual interfaces (vifs) to split Eth and FC
- Two types of VIFs: veth and vfc
 - Veth for Ethernet and FCoE; vfc for FC traffic
- Each EthX/Y/Z or Po interface typically has multiple vifs attached to it to carry traffic to and from a server
- To find all *vifs* associated with a EthX/Y/Z or Po interface, do this:

UCS-TME-LAB-A(nxos)# sh	vifs interface port-channel 1282
Interface	MAX-VIFS	VIFS
Po1282 UCS-TME-LAB-A(0 nxos)# []	Veth2046, Veth2047, Veth2048, Veth10244,

Hardy-the-new-A	(nxos)# show vifs interface port-channel 1280
Interface	MAX-VIFS VIFS
Po1280 Hardy-the-new-J) Veth782, Veth785, Veth789, Veth791, Veth792, Veth8978, (nxos)# show vifs interface veth8978
Interface	MAX-VIFS VIFS
Veth8978 Hardy-the-new- <i>l</i>) vfc786, (nxos)#

Another Way to Find VIFs:

UCS-BRU-STAGING-A# show service-profile circuit name STATICSETUP-WIN2K3									
Service Profile: STATICSETUP-WIN2K3									
Server: 1/1									
Fabric ID: A									
VIF	VNIC	Link State	Overall Status	Admin Pin	Oper Pin	Transport			
	41 /	Up	Active	0/0	1/20	Unknown			
	697 eth0	Up	Active	0/0	0/0	Ether			
	698 vhba0	Up	Active	0/0	0/0	Fc			
8890		Up	Active	0/0	0/0	Ether			
UCS-BRU-STAGING-A#									

UCS-BRU-STAGING-A(nxos)# sh run int vet697 version 4.0(1a)N2(1.1e)

interface vethernet697 switchport trunk native vlan 27 switchport trunk allowed vlan 27 bind interface Ethernet1/1/1 no pinning server sticky pinning server pinning-failure link-down

UCS-BRU-STAGING-A(nxos)# sh int ve697 vethernet697 is up Bound Interface is Ethernet1/1/1

Description: server 1/1, VNIC Encapsulation ARPA Port mode is trunk Last clearing of "show interface" counters never 5 minute input rate 0 bytes/sec, 0 packets/sec 5 minute output rate 0 bytes/sec, 0 packets/sec Rx 11459643 input packets 7313025615 bytes Tx 24186526 output packets 11202354806 bytes UCS-BRU-STAGING-A(nxos)#

UCS 6248 Hardware Diagram

Maximising the VIF Count Fabric Interconnect VIF calculation

- Every 8 10GbE ports (on FI) are controlled by the same Unified Port ASIC
- Connect fabric links from IOM to the FI to the same UPC
- Virtual Interface (VIF) namespace varies depending on number and how the fabric links are connected to the FI ports.
 - Connecting to the same UPC (a set of eight ports), Cisco UCS Manager maximises the number of VIFs used in service profiles deployed on the servers.
 - If uplink connections are distributed across UPC, the VIF count is decreased. For example, if you connect seven (IOM) fabric links to (FI) ports 1-7, but the eighth fabric link to FI port 9, the number of available VIFs is based on 1 link IOM port 8 to FI port 9.

UCS FI and IOM Connectivity

Fabric Interconnect VIF calculation cont'd.

UPC UPC UPC 3		
	IOM-A 2208 XP	юм- в 2208 XP

- Recommended
- Maximise number of available VIFs to the host

- Not recommended
- Minimal number of VIFs to the host

Cisco

Ciscolive!

Topologies

Recommended Topology for Upstream Connectivity

Layer 2 Disjoint Topology

- A vNIC can only participate in one L2 network upstream
- Both dynamic and static pinning methods are supported

Inter-Fabric Traffic Example

Ciscolive!

C-Series Integration into UCSM

C-Series UCSM Integration Before UCSM 2.1 or without VIC1225

C-Series UCSM Integration Single Wire Management with VIC1225 and UCSM 2.1

BRKCOM-2003

UCSM 2.2: Direct Connect with VIC1225 (no FEX)

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public

Ciscolive!

Wrapping Up

Recap

- UCS is first and foremost a server, not a switch
- Gen 1 vs Gen 2 components
 - 2208 and VIC 1280 allow port-channels
- VIC 1280 with 2208XP for maximum bandwidth
- End-host mode forwarding rules: dynamic pinning
- Preferred mode of operation should always be end-host mode
 - Very much plug and play, scalability, L2 multipathing, fabric failover
 - Switch mode: spanning-tree, practically no user configuration possible
- Operational consistency: C-series integration

BRKCOM-2003

Ciscolive!

Q & A

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site <u>www.ciscoliveaustralia.com/mobile</u>
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations. www.CiscoLiveAPAC.com

Ciscolive,

#