# TOMORROW starts here.





# Understanding IPv6

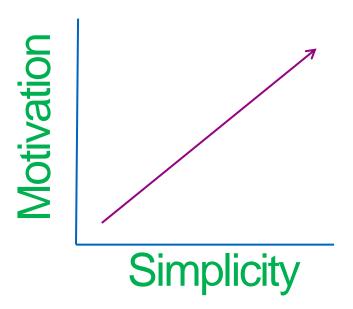
BRKRST-1069

Dean Robertshaw

**Network Consulting Engineer** 






#### The obvious!





Delay = Complexity





"Simplicity is the ultimate sophistication" Leonardo Di Vinci



### **Agenda Overview**

Why IPv6?

What is IPv6?

How does IPv6 work?











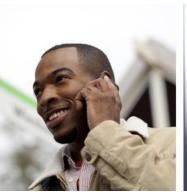


Why IPv6?

#### You Have Heard it all Before

IANA and the RIRs have run out of IPv4 address

- Consumers are generally ambivalent
  - Do not/should not care whether IPv4 or IPv6 content delivery
  - Wont understand they "Are on the wrong protocol"!
- IPv4 address trading markets
  - Growth, fragmentation, and identity verification of the IPv4 routing table is inevitable
    - /15 IPv4 Addresses For Sale; Asking \$9.00/IP
    - /16 IPv4 Addresses For Sale, Asking \$9.20/IP
    - /17 IPv4 Addresses For Sale, Asking \$9.50/IP




### You Have Heard it all Before - No longer a LEAP!















#### What is IPv6?

#### Some IPv6 Myths

IPv6 is more secure

IPv6 is faster

IPv6 is complicated

I don't need to plan for IPv6



#### What is IPv6?

- 128bit addressing scheme
  - Hexadecimal representation
  - CIDR masking
- Introduces new protocol level behaviours
  - Neighbour Discovery
  - Stateless Addressing
  - No more Broadcast, only Multicast



#### So How Big Is The IPv6 Address Space?

340,282,366,920,938,463,463,374,607,432,768,211,456 (IPv6 Address Space - 340 Trillion Trillion)

**VS** 

**4,294,967,296** (IPv4 Address Space - 4 Billion)

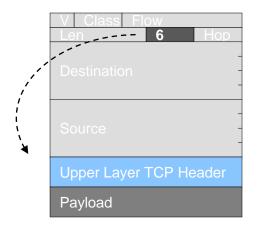


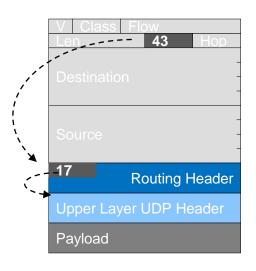
#### **IPv4** and **IPv6** Header Comparison

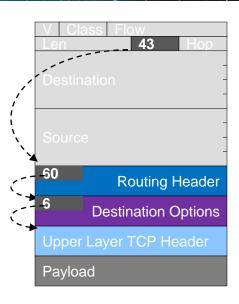
#### IPv4 Header IPv6 Header

| Version               | IHL | Type of<br>Service | Total Length       |  |
|-----------------------|-----|--------------------|--------------------|--|
| Identification        |     | Flags              | Fragment<br>Offset |  |
| Time to Live Protocol |     | Header Checksum    |                    |  |
| Source Address        |     |                    |                    |  |
| Destination Address   |     |                    |                    |  |
| Options               |     |                    | Padding            |  |

Field's Name Kept from IPv4 to IPv6
Fields Not Kept in IPv6
Name and Position Changed in IPv6


New Field in IPv6


| iPvo Header    |                  |  |                |           |  |
|----------------|------------------|--|----------------|-----------|--|
| Version        | Traffic<br>Class |  | Flow Label     |           |  |
| Payload Length |                  |  | Next<br>Header | Hop Limit |  |
| Source Address |                  |  |                |           |  |
|                |                  |  |                |           |  |

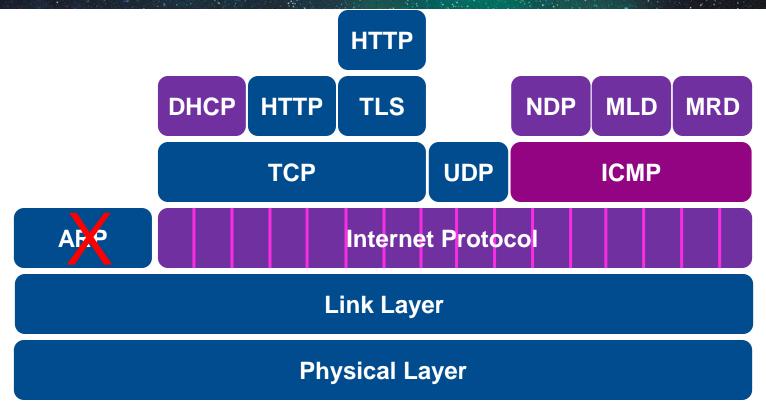



Destination Address

#### **Extension Headers**








- Extension Headers Are Daisy Chained
- Order is important!



#### IPv6 Protocol Stack

New features

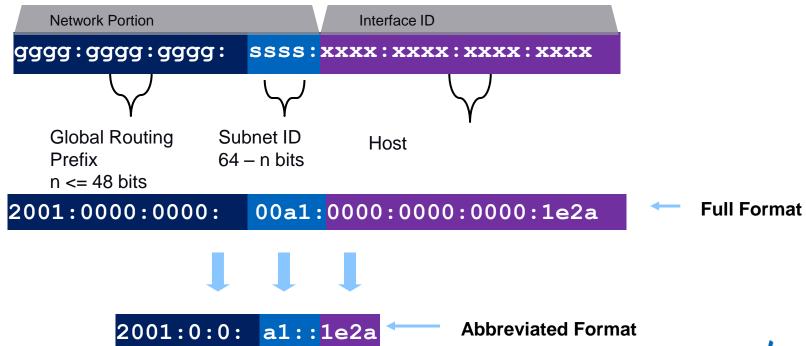




# IPv4/IPv6 Technology Comparison

| Service            | IPv4                                          | IPv6                                             |
|--------------------|-----------------------------------------------|--------------------------------------------------|
| Addressing Range   | 32-bit, NAT                                   | 128-bit, Multiple Scopes                         |
| IP Provisioning    | Manual, DHCP                                  | Manual, SLAAC, DHCP (and renumbering capability) |
| Security           | IPSec                                         | IPSec                                            |
| Mobility           | Mobile IP                                     | Mobile IP with Direct Routing                    |
| Quality-of-Service | Differentiated Service,<br>Integrated Service | Differentiated Service,<br>Integrated Service    |
| Multicast          | IGMP/PIM/MBGP                                 | MLD/PIM/MBGP, Scope Identifier                   |








IPv6 Addressing – The First Half

#### **IPv6 Addresses**

#### **Global Unicast Identifier Example**





#### **IPv6 Address Syntax**

- Hex numbers are not case sensitive
- 2001:0dB8:0000:130f:0000:0000:087c:AaAa
- Abbreviations are possible
- 2001:0db8:0000:130f::87c:aaaa
  - Zeros in contiguous blocks can be represented by (::)
  - Double colon can only appear once in the address
- Only leading zeros can be omitted
- 2001:db8:0:130f::87c:aaaa
- IPv6 uses CIDR representation
- 2001:0db8:0000:130f:0000:0000:087c:aaaa/128



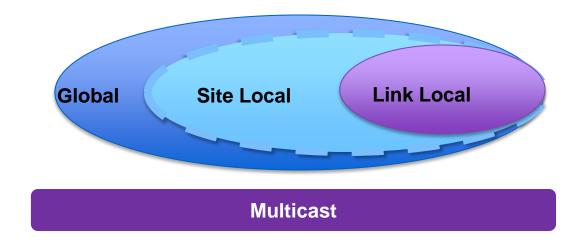
#### **IPv6 Address Syntax**

Loopback address representation

```
0:0:0:0:0:0:0:1 == ::1
```

- Same as 127.0.0.1 in IPv4, it identifies self
- Unspecified address representation

```
0:0:0:0:0:0:0:0 == ::
```


- Initial DHCP request, Duplicate Address Detection DAD
- Default Route representation

```
::/0
```



### **IPv6 Address Scopes**

 An IPv6 interface is "expected" to have multiple addresses and multiple scopes





#### **IPv6 Address Types**

- Three types of unicast addresses
  - Link-Local Non routable exists on single layer 2 domain (fe80::/64)
  - Unique-Local Routable within administrative domain
     (fc00::/7)

- Global Routable across the Internet (2000::/3)
- Multicast addresses (ff00::/8)
   Flags (z) in 3<sup>rd</sup> nibble (4 bits) Scope (s) into 4<sup>th</sup> nibble



#### **Link Local Address**

```
10 Bits 54 Bits 64 Bits

Remaining 54 bits = 0 Interface ID
```

1111 1110 10 fe80::/10

- Mandatory
- Automatically self assigned by the device using EUI-64
- Only link specific scope

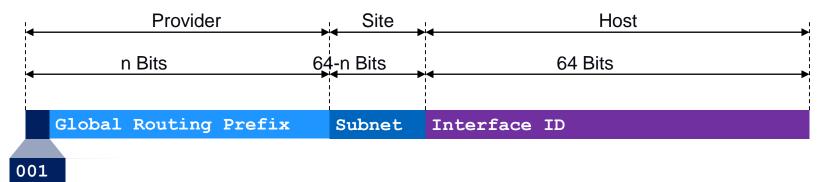


### **Unique Local Address (RFC 4193)**

```
n Bits

Global ID

Subnet Interface ID


1111 110L
```

- FC00::/8 is Registry Assigned (L bit = 0), FD00::/8 is self generated (L bit = 1)
  - Registries not yet assigning ULA space
- Global ID can be generated using an algorithm
  - Low order 40 bits result of SHA-1 Digest {EUI-64 && Time}
- Not considered best practice



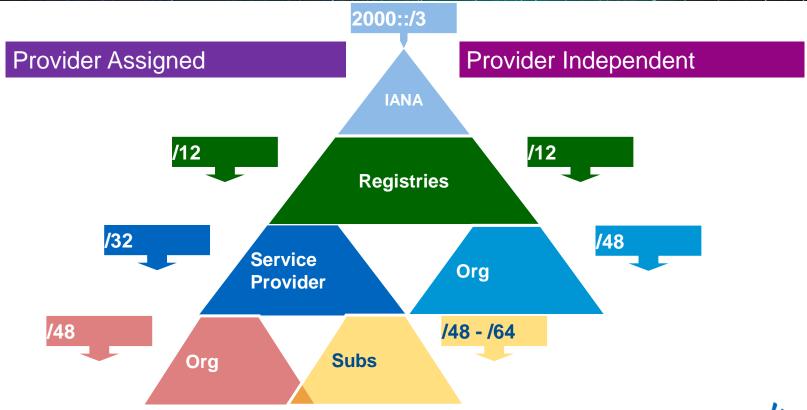
fc00::/7

#### **Global Unicast Addresses**



- Globally routable
  - Requires correct border security!!
- Considered best practice for all device numbering
- Common allocation sizes are /32, /48, /52, /56, /64




### **Interface Address Set**

An interface can have many addresses allocated to it

| Address Type                | Requirement | Comment                                           |
|-----------------------------|-------------|---------------------------------------------------|
| Link Local                  | Required    | Required on all interfaces                        |
| Unique Local                | Optional    | Valid only within an Administrative Domain        |
| Global Unicast              | Optional    | Globally routed prefix                            |
| Auto-Config 6to4            | Optional    | Used for 2002:: 6to4 tunnelling                   |
| Solicited Node<br>Multicast | Required    | Neighbour Discovery and Duplicate Detection (DAD) |
| All Nodes Multicast         | Required    | For ICMPv6 messages                               |



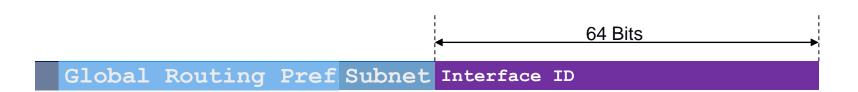
#### Pl and PA Allocation Theory







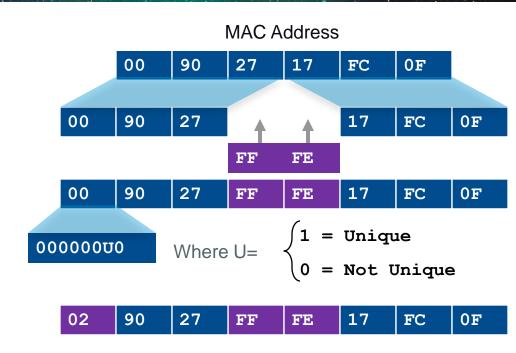
IPv6 Addressing – The Second Half




# Don't try to make it fit!



#### Address Interface ID


- Interface ID of unicast address may be assigned in different ways
  - Auto-configured from a 64-bit EUI-64 or expanded from a 48-bit MAC
  - Auto-generated pseudo-random number (to address privacy concerns)
  - Assigned via DHCP
  - Manually configured





## IPv6 Interface Identifier (EUI-64 format)

- This format expands the 48 bit MAC address to 64 bits by inserting FFFE into the middle 16 bits
  - Non-ethernet interfaces use the first MAC address in the pool on the router
  - Cisco devices 'bit-flip' the 7th bit





#### Randomised IID and Privacy Extensions

- Enabled by default on Microsoft Windows
- Enable/disable via GPO or CLI

netsh interface ipv6 set global randomizeidentifiers=disabled store=persistent netsh interface ipv6 set privacy state=disabled store=persistent

- Alternatively, use DHCP to a specific pool
- Randomised address are generated for non-temporary autoconfigured addresses including public and link-local
- Randomised addresses engage Optimistic DAD



#### Link Level—Prefix Length Considerations

#### 64 bits

- Recommended by RFC3177 and IAB/IESG
- Consistency makes management easy
- MUST for SLAAC (MSFT DHCPv6 also)
- Significant address space loss (18.466 Quintillion)

#### > 64 bits

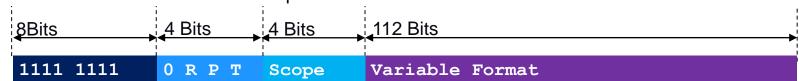
- Address space conservation
- Special cases:
   /126—valid for p2p
   /127—valid for p2p if you are
   careful RFC6164 (RFC3627)
   /128—loopback
- Must avoid overlap with specific addresses:
   Router Anycast (RFC3513)
   Embedded RP (RFC3956)
   ISATAP addresses

- /64 everywhere
- /64 + /126
  - 64 on host networks
  - 126 on point to point\*\*
- /64 + /127
  - 64 on host networks
  - 127 on point to point\*\*
- /128 on loopback
  - Sequential from same block

<sup>\*\*</sup> Allocate a /64, mask to a required mask e.g. /127







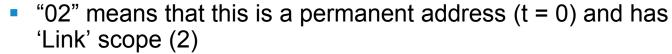

#### The Role of Multicast

# IPv6 Multicast Address (RFC 4291)

#### An IPv6 multicast address has the prefix FF00::/8 (1111 1111)

Second octet defines lifetime and scope



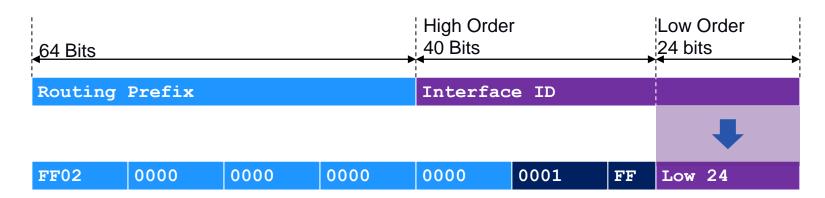

| Flags          |                                                                      |
|----------------|----------------------------------------------------------------------|
| R = 0<br>R = 1 | No embedded RP<br>Embedded RP                                        |
| P = 0<br>P = 1 | Not based on unicast Based on unicast                                |
| T = 0<br>T = 1 | Permanent address (IANA assigned) Temporary address (local assigned) |

| Scope |              |
|-------|--------------|
| 1     | Node         |
| 2     | Link         |
| 3     | Subnet       |
| 4     | Admin        |
| 5     | Site         |
| 8     | Organisation |
| E     | Global       |



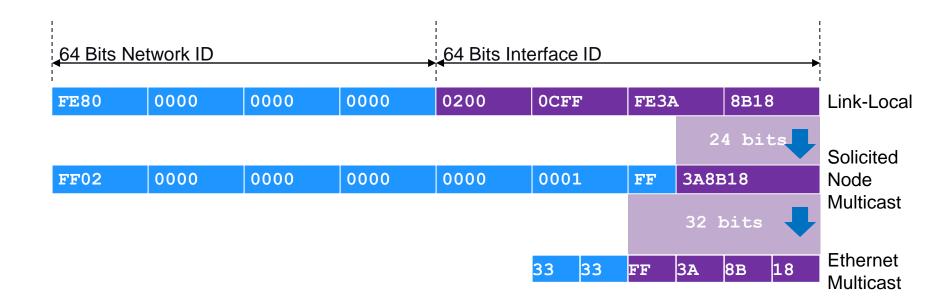
## Well Known Multicast Addresses

| Address           | Scope      | Meaning           |
|-------------------|------------|-------------------|
| FF01::1           | Node-Local | All Nodes         |
| FF01::2           | Node-Local | All Routers       |
| FF02::1           | Link-Local | All Nodes         |
| FF02::2           | Link-Local | All Routers       |
| FF02::5           | Link-Local | OSPFv3 Routers    |
| FF02::6           | Link-Local | OSPFv3 DR Routers |
| FF02::1:FFXX:XXXX | Link-Local | Solicited-Node    |




http://www.iana.org/assignments/ipv6-multicast-addresses




## Solicited-Node Multicast Address

- For each Unicast
- Used in neighbour solicitation (NS) messages
- FF02::1:FF & {lower 24 bits from IPv6 Unicast interface ID}





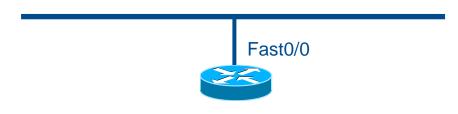
## Solicited Node Multicast Address Example

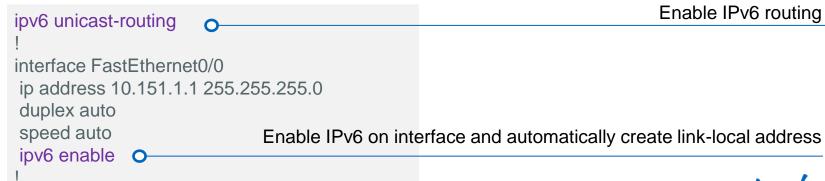




## **IPv6 Interface Example**

show ipv6 interface e0 Ethernet0 is up, line protocol is up Link-local address (FE80::) IPv6 is enabled, link-local address is FE80::200:CFF:FE3A:8B18 No global unicast address is configured Joined group address(es): All Nodes FF02::1 All Routers FF02::2 Solicited Node Multicast Address FF02::1:FF3A:8B18 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds ND advertised reachable time is 0 milliseconds ND advertised retransmit interval is 0 milliseconds ND router advertisements are sent every 200 seconds ND router advertisements live for 1800 seconds. Hosts use stateless autoconfig for addresses.






IPv6 Interface Configurations

# Link-Local Configured Interface Identifier Address (IOS)





## **IPv6 Interface with Link-Local Address**

r1#show ipv6 interface fast0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::207:50FF:FE5E:9460 Global unicast address(es): None Joined group address(es): FF02::1 FF02::2 FF02::1:FF5E:9460 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled Hosts use stateless autoconfig for addresses. r1# show interface fast0/0

EUI-64 derived from MAC address 0007.505e.9460

Listening for all hosts multicast

Listening for all routers multicast

Solicited Node multicast for link-local address

FastEthernet0/0 is up, line protocol is up

Hardware is AmdFE, address is 0007.505e.9460 (bia 0007.505e.9460)

MAC address 0007.505e.9460



## Manually Configured Interface Identifier Address



```
ipv6 unicast-routing
!
interface FastEthernet0/0
ip address 10.151.1.1 255.255.255.0
duplex auto
speed auto
ipv6 address 2001:db8::1/64

Enables IPv6 and assigns a global prefix and manual interface ID
```

## **IPv6 Interface with Manual Interface Address**

```
r1#show ipv6 interface fast0/0
FastEthernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::207:50FF:FE5E:9460
 Global unicast address(es):
                                                                                       Routable /64 subnet
  2001:db8::1, subnet is 2001:db8::/64
                                                       Global unicast address with manual interface ID of "1"
 Joined group address(es):
  FF02.1
  FF02::2
                                      Corresponding Solicited Node multicast address for manual interface ID
  FF02::1:FF00:1
                                   Corresponding Solicited Node multicast address for Link-Local interface ID
  FF02::1:FF5E:9460
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
```



ICMP redirects are enabled

Hosts use stateless autoconfig for addresses.

## **EUI-64 Configured Interface Identifier Address**



```
ipv6 unicast-routing
!
interface FastEthernet0/0
ip address 10.151.1.1 255.255.255.0
duplex auto
speed auto
ipv6 address 2001:db8::/64 eui-64

Enables IPv6 and assigns a global prefix and EUI-64 interface ID
!
```

## **IPv6 Interface with EUI-64 Interface Address**

```
r1#show ipv6 interface fast0/0
                                                         Link-Local address with EUI-64 interface ID
FastEthernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::207:50FF:FE5E:9460 ○
 Global unicast address(es):
                                                 Manually configured address with EUI-64 Interface I
  2001:db8::207:50FF:FE5E:9460, subnet is 2001:db8::/64 •
 Joined group address(es):
  FF02::1
                                     Solicited Node multicast for both manual and link-local address
  FF02::2
  FF02::1:FF5E:9460
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
Hosts use stateless autoconfig for addresses.
```

r1#show interface fast0/0

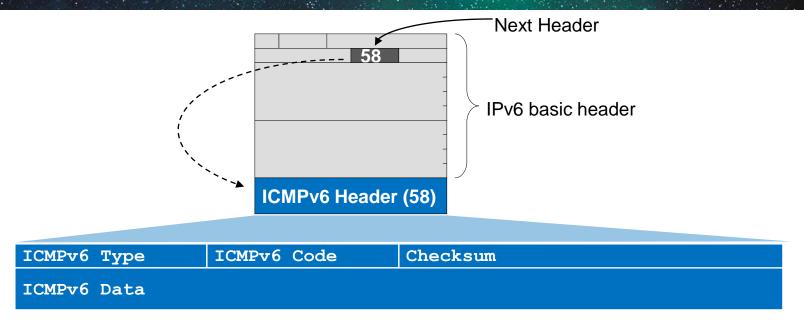
FastEthernet0/0 is up, line protocol is up Hardware is AmdFE, address is 0007.505e.9460 (bia 0007.505e.9460)



MAC address 0007.505e.9460 used for EUI-64






## IMCPv6 and Neighbour Discovery

## ICMPv6

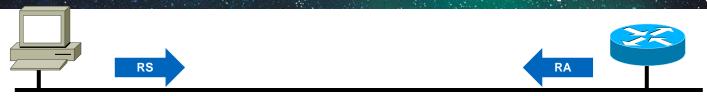
**MRD SLAAC** NDP MLD **Multicast Neighbour Stateless Multicast** Router **Address Auto-Discovery** Listener **Discovery** Configuration (ARP) **Discovery** ICMPv6 IPv6



## ICMPv6 Header



 Also used for Neighbour Discovery, Path MTU discovery and Multicast Listener Discovery (MLD)




## Neighbour Discovery Messages (ND)

| Message                         | Purpose                                                                            | ICMP<br>Code | Sender  | Target                        |
|---------------------------------|------------------------------------------------------------------------------------|--------------|---------|-------------------------------|
| Router Solicitation (RS)        | Prompt routers to send RA                                                          | 133          | Nodes   | All routers                   |
| Router Advertisement (RA)       | Advertise default router, prefixes Operational parameters                          | 134          | Routers | Sender of RS<br>All nodes     |
| Neighbour Solicitation (NS)     | Request link-layer of target                                                       | 135          | Node    | Solicited Node<br>Target Node |
| Neighbour<br>Advertisement (NA) | Response to NS (solicited)<br>Advertise link-layer address<br>change (Unsolicited) | 136          | Nodes   | Sender of NS                  |



## Router Solicitation and Advertisement (RS & RA)



| Router<br>Solicitation |                                 |
|------------------------|---------------------------------|
| ICMP Type              | 133                             |
| IPv6 Source            | Link Local (FE80::1)            |
| IPv6<br>Destination    | All Routers Multicast (FF02::2) |
| Query                  | Please send RA                  |

| Router<br>Advertisement |                                                   |
|-------------------------|---------------------------------------------------|
| ICMP Type               | 134                                               |
| IPv6 Source             | Link Local (FE80::2)                              |
| IPv6<br>Destination     | Sender of RS<br>All Nodes Multicast<br>(FF02::1)  |
| Data                    | Options, subnet prefix, lifetime, autoconfig flag |

- Router solicitations (RS) are sent by booting nodes to request RAs for configuring the interfaces
- Routers send periodic Router Advertisements (RA) to the all-nodes multicast address



## Neighbour Solicitation & Advertisement (NS & NA)



| Neighbour    |
|--------------|
| Solicitation |

| ICMP Type           | 135                             |  |
|---------------------|---------------------------------|--|
| IPv6 Source         | A Unicast                       |  |
| IPv6<br>Destination | B Solicited Node Multicast      |  |
| Target / Options    | B Unicast / FE80:: address of A |  |
| Query               | What is B link layer address?   |  |





#### Neighbour Advertisment

| ICMP Type           | 136                      |
|---------------------|--------------------------|
| IPv6 Source         | B Unicast                |
| IPv6<br>Destination | A Unicast                |
| Data                | FE80:: address of B, MAC |



## **Neighbour Cache Entry States**

#### INCOMPLETE

 Address resolution is in progress and the link-layer address of the neighbour has not yet been determined

#### REACHABLE

The neighbour is known to have been reachable recently (within tens of seconds ago)

#### STALE

 The neighbour is no longer known to be reachable but until traffic is sent to the neighbour, no attempt should be made to verify its reachability

#### DELAY

 Delay sending probes for a short while in order to give upper layer protocols a chance to provide reachability confirmation

#### PROBE

 The neighbour is no longer known to be reachable, and unicast Neighbour Solicitation probes are being sent to verify reachability



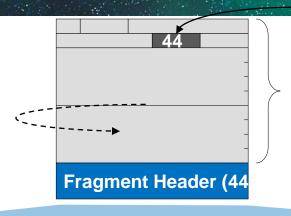
## **Duplicate Address Detection (DAD)**

Tentative IP Actual IP FE80::260:8FF:FE52:F9D8 FE80::260:8FF:FE52:F9D8 NS NA NA NS **ICMP Type** 135 (Neighbour Solicitation) **ICMP Type** 135 (Neighbour Solicitation) **Ethernet DA** 33-33-00-00-00-01 **Ethernet DA** 33-33-FF-52-F9-D8 IPv6 Header **IPv6 Header** IPv6 Source FE80::260:8FF:FE52:F9D8 **IPv6 Source IPv6 Destination** FF02::1 **IPv6 Destination** FF02::1:FF52:F9D8 **NA** Header **NS Header Target Address** FE80::260:8FF:FE52:F9D8 FE80::260:8FF:FE52:F9D8 **Target Address Neighbour Discovery Option Target MAC** 00-60-08-52-F9-D8







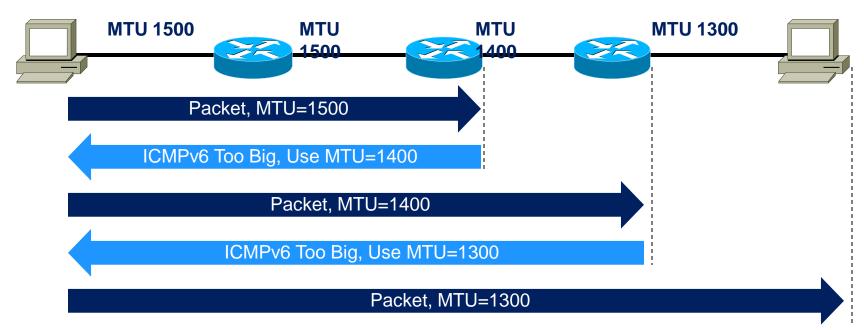

Fragmentation and Path MTU Discovery

## Fragmentation in IPv6

- Unfragmentable part
  - IPv6 header plus any headers that must be processed by the nodes en-route
  - Repeated with fragments appended to it following the "fragment header"
- Fragmentable part
  - The headers that need to be processed only by the destination node = the end-to-end headers + upper layer header and data
  - Fragmentable part is divided into pieces with length multiple of 8 octets
- Minimum MTU for IPv6 is 1280 bytes
  - All links MUST support it



## **Fragment Header**




| Next Header    | Reserved | Fragment Offset | 00 | M |
|----------------|----------|-----------------|----|---|
| Identification |          |                 |    |   |
| Fragment Data  |          |                 |    |   |

- Fragmentation is left to end devices in IPv6
  - Routers do not perform fragmentation
- Fragment header used when an end node has to send a packet larger than the path MTU



## **Path MTU Discovery**



- Store PMTU per destination (if received)
- Age out PMTU (10 mins), reset to first link MTU





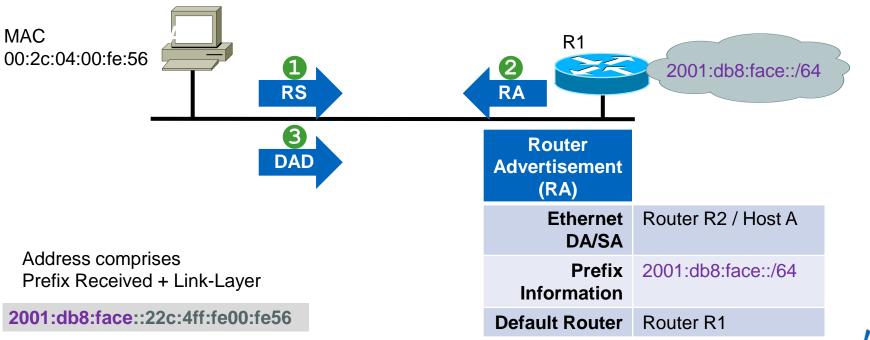


Host Address Assignment



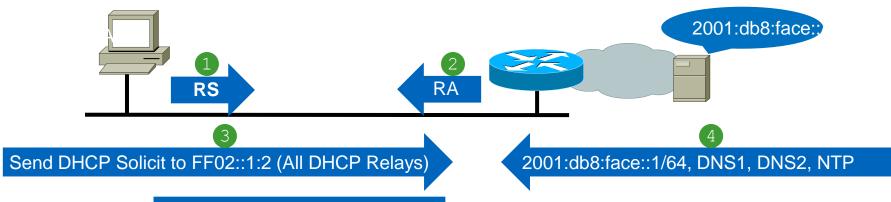
# Renumbering networks!




## **IPv6 Host Address Assignment Methods**

- Manual Assignment
- Stateless Address Autoconfiguration (SLAAC RFC 4862)
  - Allows auto assignment of address
- Stateful DHCPv6 (RFC 3315)
  - Allows DHCPv6 to allocate IPv6 address plus other configuration
- DHCPv6-PD (RFC 3633)
  - Allows DHCPv6 to allocate entire subnets to a router/CPE device
- Stateless DHCPv6 (RFC 3736)
  - SLAAC for host address allocation and DHCPv6 for other configuration




## Stateless Address Autoconfiguration (RFC4862)

SLAAC is used to automatically assigned an address to a host "plug and play"



## Router Advertisement for Stateful DHCPv6

RA message contain flags that indicate address allocation combination (A, M and O bits)



| RA                                         |                                                      |
|--------------------------------------------|------------------------------------------------------|
| A bit (Address config flag)                | Set to 0 - Do not use SLAAC for host config          |
| M bit (Managed address configuration flag) | Set to 1 - Use DHCPv6 for host IPv6 address          |
| O bit (Other configuration flag)           | Set to 1 - Use DHCPv6 for additional info (DNS, NTP) |



### Router Advertisement for Stateless DHCPv6

RA message contain flags that indicate address allocation combination (A, M and O bits)



**DHCP Solicit to FF02::1:2 for options only** 

RA

| A bit (Address config flag)                | Set to 1 - Use SLAAC for host address config  |
|--------------------------------------------|-----------------------------------------------|
| On-link Prefix                             | 2001:db8:face::/64                            |
| M bit (Managed address configuration flag) | Set to 0 - Do not use DHCPv6 for IPv6 address |
| O bit (Other configuration flag)           | Set to 1 - Use DHCPv6 for                     |

2001:db8:face::/64

additional info (DNS, NTP)



DNS1, DNS2, NTP

## DHCPv6 Configuration Options Setting the Bits

#### A bit (default) just use SLAAC

interface e0/0 ipv6 address 2001:db8:1000::1/64



Host gets address and other SLAAC options. Nothing else

#### M bit & O bit (Stateful DHCP)

interface e0/0

ipv6 address 2001:db8:1000::1/64

ipv6 nd managed-config-flag

ipv6 nd other-config-flag

ipv6 dhcp relay destination 2001:db8::10

A bit & O bit (Stateless DHCP)

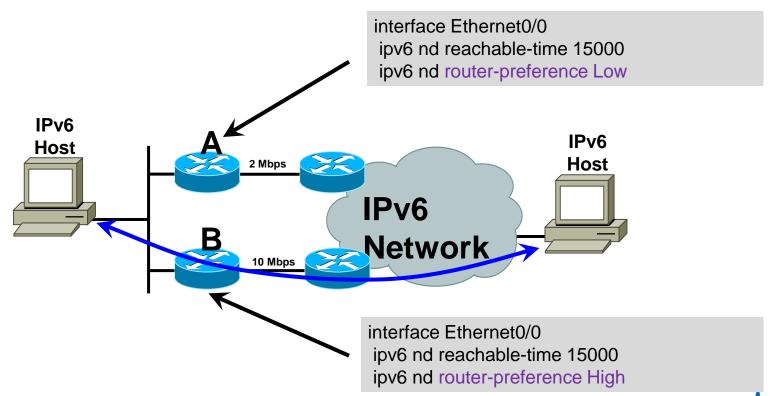
interface e0/0

ipv6 address 2001:db8:1000::1/64

ipv6 nd other-config-flag

ipv6 dhcp relay destination 2001:db8::10




Host gets full stateful config from DHCP server (2001:db8::10)



Host get address from SLAAC and other config from DHCP server (2001:db8::10)

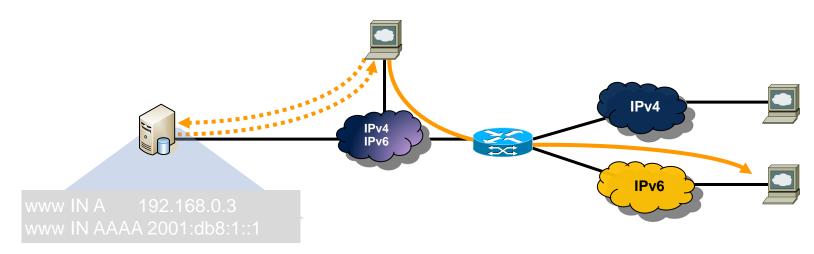


## **Default Router Selection**





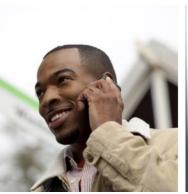



## Domain Name System (DNS)

## **IPv6 and DNS Entries**

| Function                     | IPv4                                                             | IPv6                                                                                                |
|------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Hostname<br>to<br>IP Address | A Record www.abc.test. IN A 92.168.30.1                          | AAAA Record (Quad A)<br>www.abc.test. IN AAAA 2001:db8:C18:1::2                                     |
| IP Address<br>To<br>Hostname | PTR Record<br>1.30.168.192.in-addr.arpa. IN PTR<br>www.abc.test. | PTR Record 2.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.8.1.c.0.8.b.d.0. 1.0.0.2.ip6.arpa IN PTR www.abc.test. |




## **Dual Stack Approach & DNS**



- In a dual stack case an application that:
  - Is IPv4 and IPv6-enabled
  - Can query the DNS for IPv4 and/or IPv6 records (A) or (AAAA) records
  - Chooses one address and, for example, connects to the IPv6 address













## Routing IPv6



## In Summary!





#### Overview of Routing Protocols in IPv6

- Routing in IPv6 is unchanged from IPv4
  - Still has two families of routing protocols: IGP and EGP
  - Still uses the longest-prefix match routing algorithm
- IGP
  - RIPng (RFC 2080)
  - Cisco EIGRP for IPv6
  - Integrated IS-IS for IPv6 (RFC 5308)
  - OSPFv3 (RFC 5340)
- EGP
  - MP-BGP4 (RFC 4760) and Using MP-BGP for IPv6 (RFC 2545)
- Cisco IOS supports all IPv6 routing protocols



#### **Static Routing**

Similar to IPv4

Static routing CLI for IPv6

Forward a packets via link-local NH

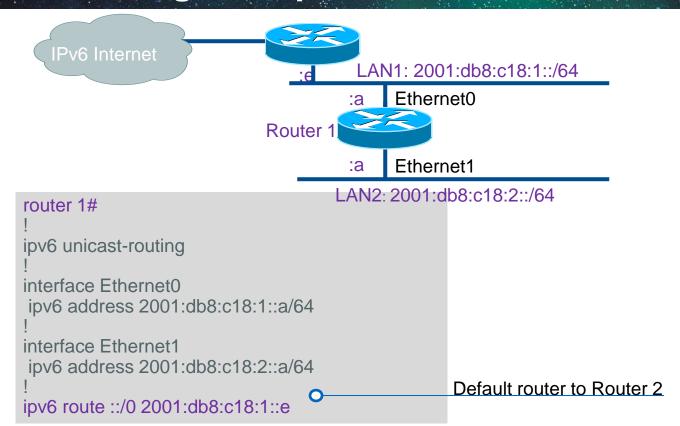
Next hop / interface is required

ipv6 route ipv6-prefix/prefix-length {ipv6-address | interface-type interface-number [ipv6-address]}
[administrative-distance] [administrative-multicast-distance | unicast | multicast] [tag tag]

!

Forward a packets via NH using admin of 10

Router(config)# ipv6 route 2001:db8::0/32 2001:db8:1:1::1 10


!

Router(config)# ipv6 route 2001:db8::/32 ethernet 1/0 fe80::215:c7ff:fe21:8640

!

Cisco (ive)

#### **Default Routing Example**





#### **EIGRP for IPv6 Features**

Three new TLVs introduced


Hello messages use FF02::A (all EIGRP routers)

Automatic summarisation is disabled by default for IPv6 (unlike IPv4)

- Process starts in "shutdown" mode
- RID stays at 32 bits



#### **EIGRP for IPv6 Configuration**



```
Router1# show ipv6 eigrp neighbor
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 FE80::260:3eff:fe47:1530 E0 14 00:01:43 1 4500 0 1

Router1# show ipv6 eigrp topology all-links
P 2001:db8:c18:1::/64, 1 successors, FD is 28160, serno 1 Neighbours and next hops are identified by link-local address
```

via Connected, Ethernet0

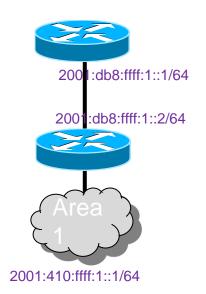
via FE80::260:3eff:fe47:1530 (30720/28160), Ethernet0

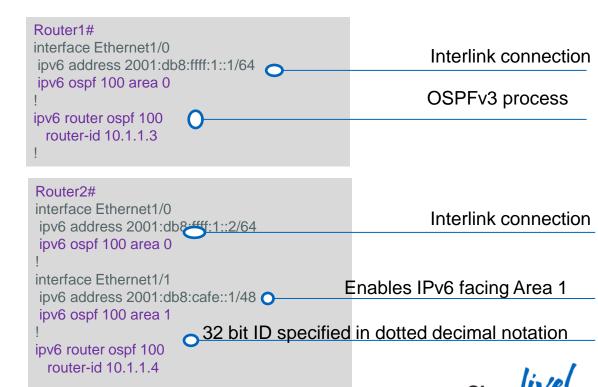
#### **OSPFv3 Overview**

OSPFv3 is OSPF for IPv6 (RFC 5340)

Based on OSPFv2 with enhancements

Distributes IPv6 prefixes only

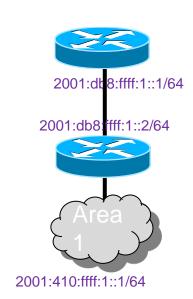

Ships-in-the-night with OSPFv2


No in-protocol Authentication



#### **OSPFv3 Configuration Example**

Classic IOS syntax






BRKRST-1069 © 2014 Cisco and

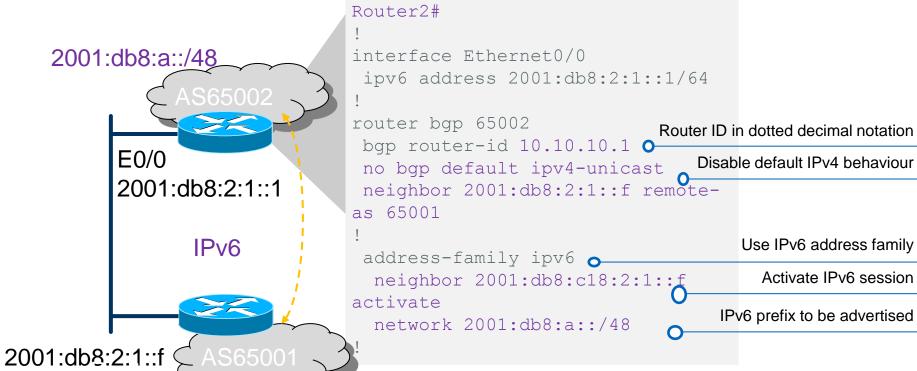
#### **OSPFv3 Configuration Example**

Unified IOS syntax



Supported as of 15T/15S IOS trains

Router1#
interface Ethernet1/0
ipv6 address 2001:db8:ffff:1::1/64
ospfv3 100 area 0 ipv6
!
OSPFv3 process
router ospfv3 100
router-id 10.1.1.3
!


Router2#
interface Ethernet1/0
ipv6 address 2001:db8:fff:1::2/64
ospfv3 100 area 0 ipv6
!
interface Ethernet1/1
ipv6 address 2001:db8:cafe::1/48
ospfv3 100 area 1 ipv6
!
32 bit ID specified in dotted decimal notation
router ospfv3 100
router-id 10.1.1.4

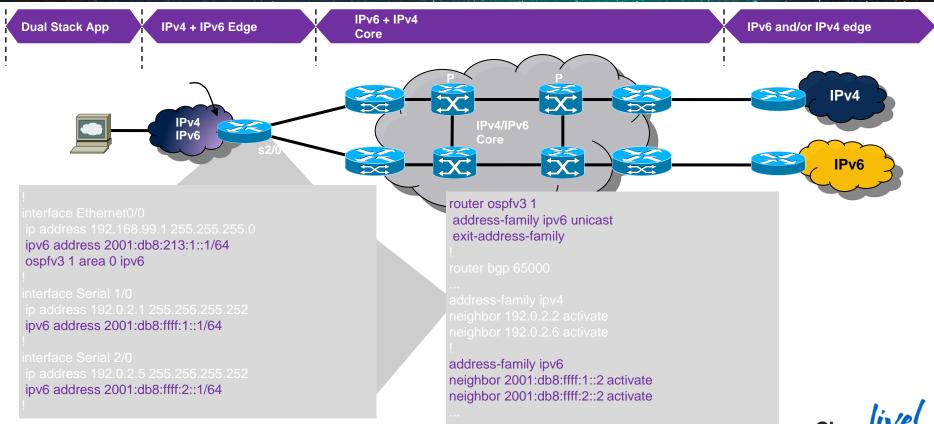
#### MP-BGP for IPv6 Overview

- TCP Interaction
  - BGP-4 runs over a TCP (179) session using IPv4 or IPv6
  - The NLRI BGP carried (IPv4, IPv6, MPLS) is agnostic of the session protocol
- Router ID
  - BGP router-id must still exist is in 32 bit dotted decimal notation
- Next-hop contains a global IPv6 address (or potentially a link local address)
- Link local address as a next-hop is only set if the BGP peer shares the subnet with both routers (advertising and advertised)



#### **BGP IPv6 Configuration Global Address Peering**




E0/0





Putting it all Together

#### **Dual Stack Configuration**



## There are 3 certainties in life

Death, Taxes IPv6!



### Ciscolive!

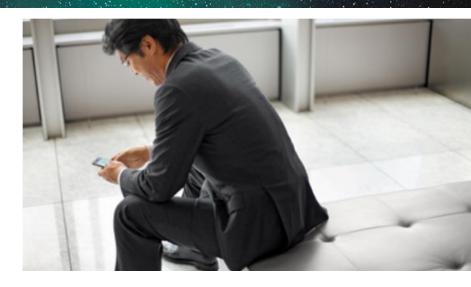








Q & A


#### **Complete Your Online Session Evaluation**

### Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm



#### **Learn online with Cisco Live!**

Visit us online after the conference for full access to session videos and presentations.

www.CiscoLiveAPAC.com



#