TOMORROW starts here.

Application Visibility and Control in Enterprise WAN

BRKRST-2030

Liad Ofek
Manager, Technical Marketing – Application Experience Services
Enterprise Networking Group
Cisco

Emerging Branch DemandsThe Application Landscape Is Changing

BRKRST-2030

Cisco Public

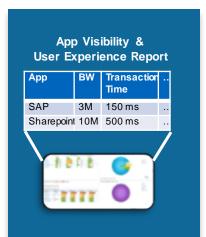
© 2014 Cisco and/or its affiliates. All rights reserved.

What is Application Visibility and Control (AVC)

What is Needed

Application Recognition

Identify applications using L3 to L7 information


Perf. Collection & Exporting

Collect application performance metrics, and export to management tool

Control

Control application network usage to improve application performance

Management Tool

Advanced reporting tool aggregates and reports application performance

BRKRST-2030

© 2014 Cisco and/or its affiliates. All rights reserved.

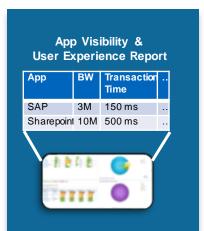
Cisco Public

What is Application Visibility and Control (AVC)

Enabled Technologies

Application Recognition

- NBAR2
- Metadata


Perf. Collection & Exporting

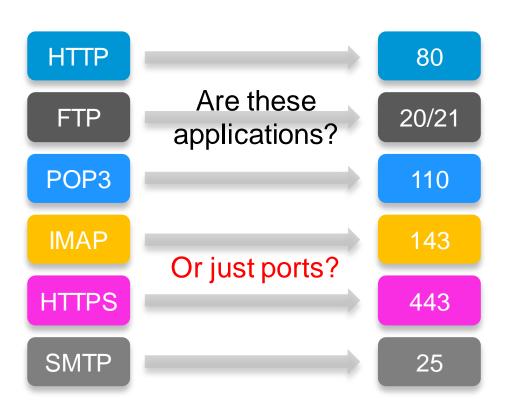
- Unified Monitoring
 - Traffic Statistics
 - Response Time
 - Voice/Video
 Monitoring
 - URL Collection

Control

- QoS (w/ NBAR2)
- PfR

Management Tool

- Cisco Prime Infrastructure
- 3rd Party Tools

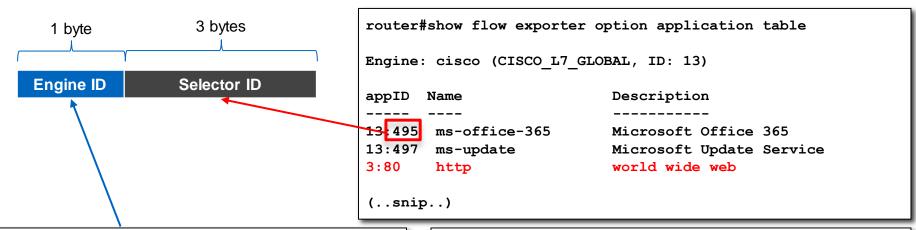


Discover - Classification

What is An Application?

What about these?

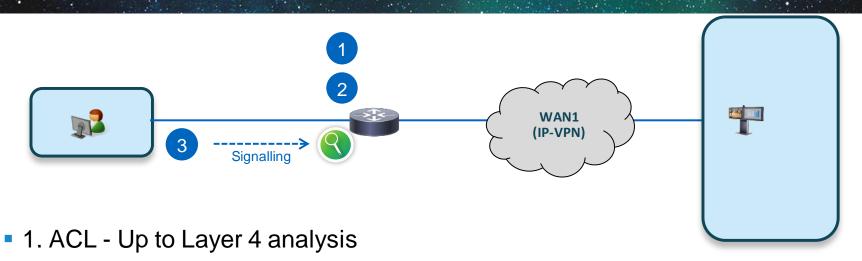
Global Application ID


- Global Application Id: a unique Id per application reported of all DPI engines in Cisco
 - IOS ISR, IOS-XE ASR1k, Network Analysis Module, IOS Firewall
- A Cisco proprietary format, based on
 - On a L3 protocol, i.e. the IANA protocol type
 - On a L4 protocol, i.e. the IANA well known ports
 - On a L2 protocol, i.e. the Ethertype
 - On a L7 application/protocol: proprietary assignments (NO IANA registry for L7)
- Going to the IETF with this application id encoding
 - "Export of Application Information in IPFIX", RFC 6759

Global Application ID

NBAR2 Application ID Format (4 bytes)


```
router#show flow exporter option application engines
Engine: prot (IANA_L3_STANDARD, ID: 1)
Engine: port (IANA_L4_STANDARD, ID: 3)
Engine: NBAR (NBAR_CUSTOM, ID: 6)
Engine: cisco (CISCO_L7_GLOBAL, ID: 13)
```


BRKRST-2030

```
router#sh ip nbar protocol-id ms-office-365

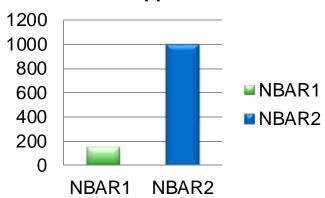
Protocol Name id type
-----ms-office-365 495 L7 STANDARD

router#
```

Application Recognition in Enterprise

- 2. Deep Packet Inspection Up to the application level
- 3. Metadata Interact with application to go deeper into the end user flows

Deep Packet Inspection Next Generation NBAR (NBAR2)



- New DPI engine provides Advanced Application Classification and Field Extraction Capabilities from SCE
- Protocol Pack allows adding more applications without upgrading or reloading IOS

NBAR2 Highlight

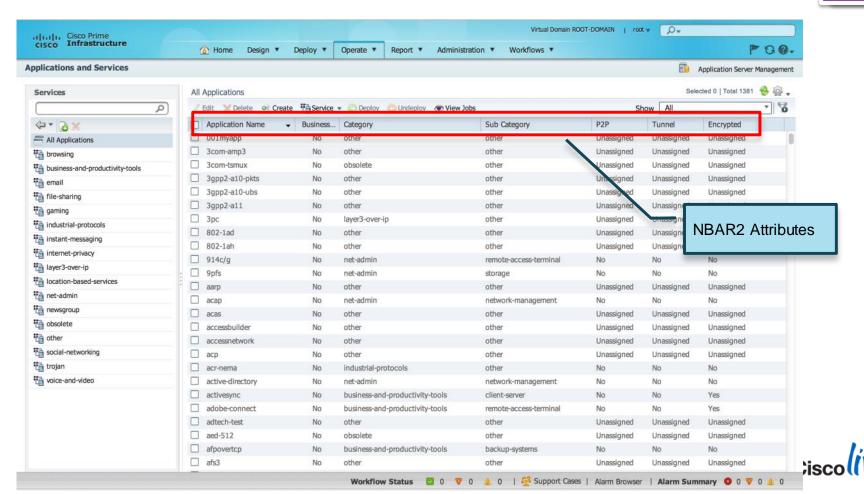
Number of Applications Supported

- More than 1000 applications support and growing
- Categorisation to simplify application management
- In-service signature update through Protocol Pack

HTTP URI

HTTE	P Hostname	Brow	Browser Type			
Trafic par h	nostname		•			
1 - 6 on 1	16 1 2 3 4 5 6 10 2	0				
Hits 💠	Hostname \$	Entrant 💠	Sortant 🔷			
17	www.cnn.com	546.46 Ko	109.23 Ko			
15	ads.cnn.com	54.87 Ko	78.97 Ko			
12	i.cdn.turner.com	251.56 Ko	23.64 Ko			
12	mi.adinterax.com	608 Octets	1.92 Ko			
12	cdn.ndtv.com	-	480 Octets			
11	d3.zedo.com	176.28 Ko	37.94 Ko			

- Field Extraction collect application specific information in addition to identify applications
- NBAR2 sub-classification features -Dynamic payload types, SSL sub classification, PCoIP sub classification etc.
 Cisco


Simplify Application Management with NBAR2 Attributes

- NBAR2 attribute provides grouping of similar types of applications
- Use attributes to report on group of applications or to simplify QoS classification
- 6 pre-defined attributes per application (can be reassigned by users)

Category	First level grouping of applications with similar functionalities
Sub-category	Second level grouping of applications with similar functionalities
Application-group	Grouping of applications based on brand or application suite
P2P-technology?	Indicate application is peer-to-peer
Encrypted?	Indicate application is encrypted
Tunneled?	Indicate application uses tunnelling technique

Grouping Apps for Reporting and Classification

Define Your Own Application in NBAR2

Port

- TCP or UDP
- 16 static ports per application
- Range of ports (1000 maximum)

Payload

- Search the first 255 bytes of TCP or UDP payload
- ASCII (16 characters)
- Hex (4 bytes)
- Decimal (1-4294967295)
- Variable (4 bytes Hex)

HTTP URL

- URI regex
- Host regex

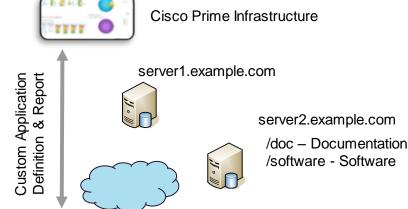
NBAR2 Custom Application Enhancement

Custom application match on HTTP URL and/or Host

ip nbar custom 001-payroll http host server1.example.com id 60001

ip nbar custom 002-doc http url doc host server2.example.com id 60002

ip nbar custom 003-soft http url software host server2.example.com id 60003

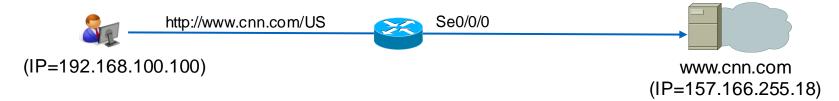

Custom E				
Custom App	Server	URI	BW	Resp. Time
My Payroll	server1.example.com	-	2M	100ms
My Doc. Mgmt.	server2.example.com	/doc	1M	250ms
My Software Rep.	server2.example.com	/software	5M	30sec

Selector ID

Custom App

All the NBAR commands are under "ip nbar..." it is completely unrelated to the IP version.

Custom application attribute value is set to 'other' and 'unassigned' by default



NBAR2 Field Extraction Overview

- Ability to look into specific applications for additional field information
- NBAR2 extracted fields from HTTP, RTP, PCOIP, etc... for QoS configuration
- HTTP Header Fields
- Eases classification of voice and video traffic
 - VoIP, streaming/real time video, audio/video conferencing, Fax over IP
 - Distinguishes between RTP packets based on payload type and CODECS
- Some extracted fields within Flexible NetFlow and Unified Monitoring

NBAR2 Field Extraction HTTP Example

Ability to extract information from HTTP message

collect application http host

Collect application http url

GET /weather/getForecast?time=37&&zipCode=95035 HTTP/1.1

Host: svcs.cnn.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)

Gecko/201001 01 Firefox/14.0.1

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate
Connection: keep-alive
Referer: http://www.cnn.com/US/

collect application

http referer

NBAR2 Field Extraction Support

Ability to extract certain fields out of protocol for reporting

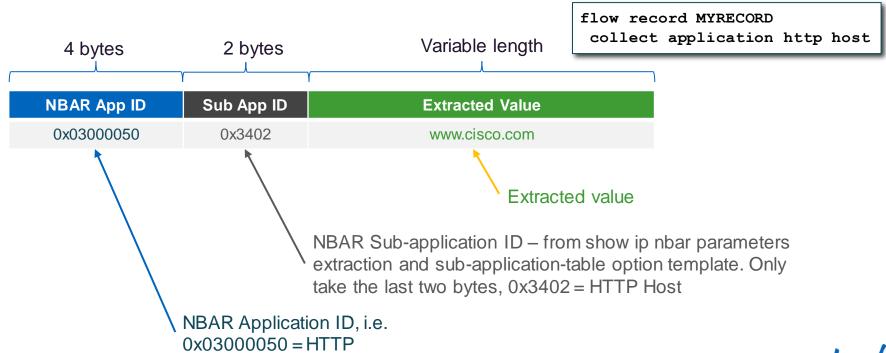
Protocol Fields	Length	FNF Configuration Syntax
HTTP URL	*	collect application http url
HTTP Host	50	collection application http host
HTTP User-agent	200	collection appllication http user-agent
HTTP Referer	*	collect application http referer
RTSP Host	50	collection application rtsp host-name
SMTP Server	50	collect application smtp server
SMTP Sender	50	collect application smtp sender
POP3 Server	50	collect application pop3 server
NNTP Group Name	50	collect application nntp group-name
SIP Source Domain	50	collect application sip source
SIP Destination Domain	50	collect application sip destination

(*) ISR-G2: URL and Host

Cisco Public

Sub Classification NBAR RTP Payload Type Classification

- Eases classification of voice and video traffic
 - VoIP, streaming/real time video, audio/video conferencing, Fax over IP
- Distinguishes between RTP packets based on payload type and CODECS
- New in PP 7.0
 - audio/video parameters will match not only if the PT is in the known static range of audio or video, but also if it's in the dynamic range
- Future: audio/video granularity will be not a sub-classification but an actual protocol, so the report will show it well.


CODEC	Payload Type
G.711 (Audio)	0 (mu-law) 8 (a-law)
G.721 (Audio)	2
G.722 (Audio)	9
G.723 (Audio)	4
G.728 (Audio)	15
G.729 (Audio)	18
H.261 (Video)	31
MPEG-1 (A/V)	44 (4
MPEG-2 (AV)	14 (Audio), 32 (Video), 33 (A-V)
Dynamic	96–127

```
Router(config-cmap)# match protocol rtp ?
audio match voice packets
payload-type match an explicit PT (Payload Type)
video match video packets
```


NBAR2 Field Extraction Sub-application ID Format

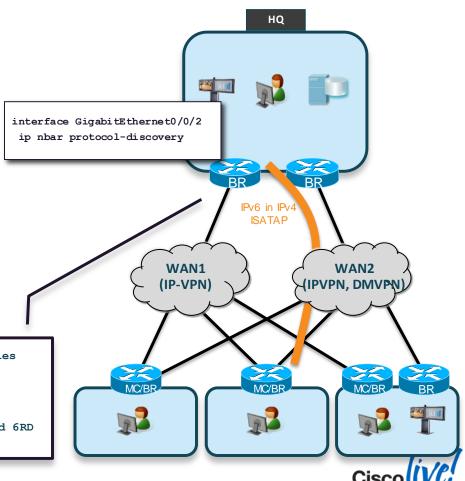
NBAR2 Sub-application ID Format (variable length)

NBAR2 and Encrypted Traffic Overview

70+

 With heuristics based classification, NBAR can classify 70+ encrypted applications.

Protocol Discovery IPv4 and IPv6 Classification

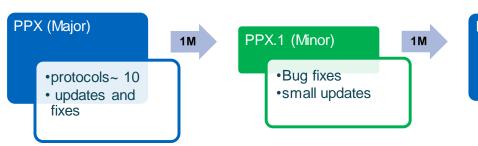

- Discover application protocols transiting an interface, and populate CISCO-NBAR-PROTOCOL-DISCOVERY-MIB
- Supports both input and output traffic
- Stateful application classification for IPv6 in IPv4 traffic
- Detection of IPv6 in IPv4 traffic (ISATAP, Teredo,6to4,..)

With IPv6 tunnel inspection turn ON, NBAR classifies this flow as "HTTP"

interface Gi1/1

ip nbar classification tunneled-traffic ?

ipv6inip Tunnel type ISATAP, 6to4 and 6RD teredo Tunnel type TEREDO



How NBAR2 can be Used

- Protocol Discovery "ip nbar protocol-discovery" CLI
 - Discovers and provides real time statistics on applications
 - IPv4 and IPv6 supported
 - IPv6 in IPv4 tunnel inspection
 - Accounting: per-interface, per-application, bi-directional statistics:
 Bit rate (bps), Packet counts and Byte counts
 - Information available in the CISCO-NBAR-PROTOCOL-DISCOVERY-MIB
- Invoke 'match protocol' CLI in C3PL/MQC (class-map) CLI
 - Application optimisation
 - Used in a number of different IOS functions (QoS, performance monitor, IOS FW)
- With Flexible NetFlow (regardless of QoS)
 - Invoke 'match|collect application name' fields in flexible netflow (FNF)
 - Application name/ID is included in NetFlow export reports

NBAR2 – Regular Updates In-service Application Definition Update

PPY (Major)

• Protocols~10
• updates and fixes

•small updates PP 7.1 Available NBAR2 Protocol Pack

PPY.1 (Minor)

Bug fixes

Advanced Protocol Pack

- Includes all supported Protocols / Applications
- Support Traffic categorisation and Attributes
- Available (as Default protocol pack) in DATA image
- Periodic releases and Offers SLA

Useful Pointers:

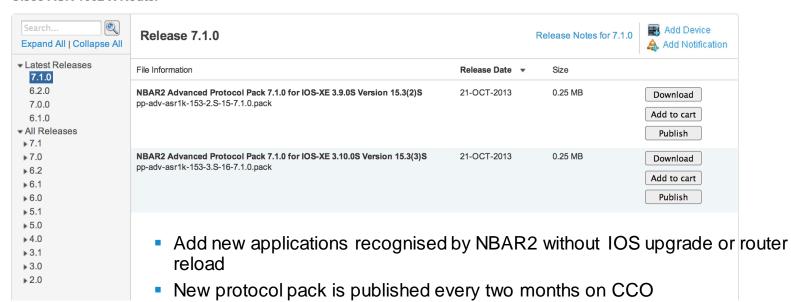
Protocol Library

http://www.cisco.com/en/US/docs/ios-xml/ios/qos_nbar/prot_lib/config_library/nbar-prot-pack-library.html

Protocol List and Version support

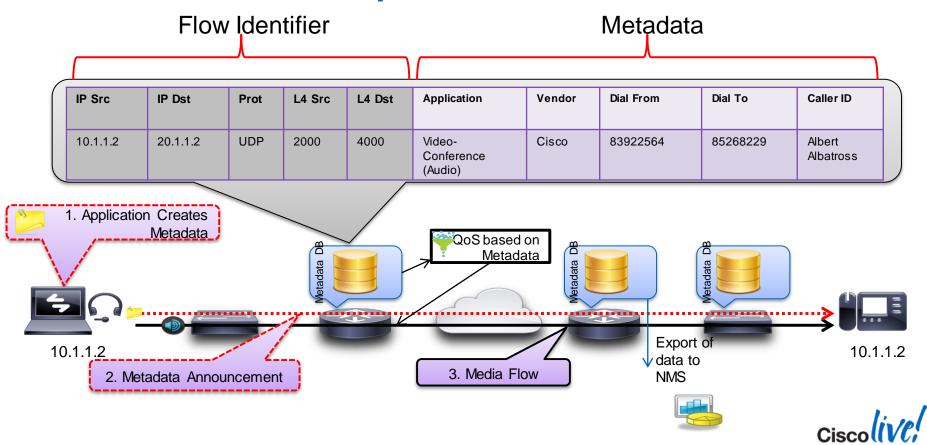
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6558/ps6616/product_bulletin_c25-627831.html

NBAR2 Protocol Pack Example

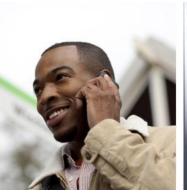


Download Software

Download Cart (0 items) [+] Feedback Help

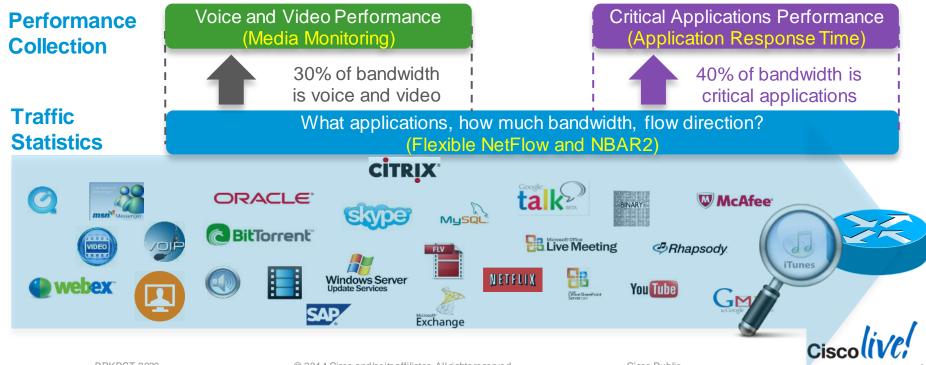

Downloads Home > Products > Routers > WAN Aggregation and Internet Edge Routers > Cisco ASR 1000 Series Aggregation Services Routers > Cisco ASR 1002-X Router > NBAR2 Protocol Packs-7.1.0

Cisco ASR 1002-X Router



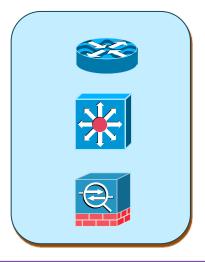
Single IOS CLI to enable the protocol pack

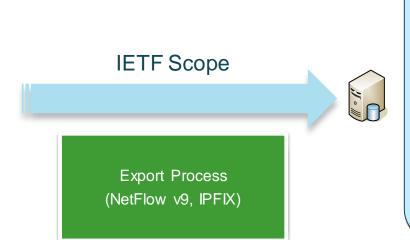
Flow Metadata Principles



Performance Collection

Performance Collection & Exporting What is it?


Integrated performance monitoring available for different type of applications and use cases


Performance Monitoring

Foundation Overview

Devices

Metering Process (Flexible NetFlow Performance Monitor)

NMS

Capacity Planning Security Performance Analysis Visibility

Foundation: Metering Process NetFlow Key Fields vs Non-key Fields

Key Fields	Packet 1
Source IP	1.1.1.1
Destination IP	2.2.2.2
Source port	23
Destination port	22078
Layer 3 Protocol	TCP - 6
TOS Byte	0
Non-key Fields	Packet 1
Length	1250

- IPv4 and IPv6 support
- Key fields are unique per flow record (match statement)
- Non-key fields are attributes or characteristics of a flow (collect statement)
- If packet key fields are unique, new entry in flow record is created
 - First packet of a flow will create the Flow entry using the Key Fields"
 - Remaining packets of this flow will only update statistics (bytes, counters, timestamps)
- Otherwise, update the non-key fields, i.e. packet count

Key Fields	Packet 2
Source IP	3.3.3.3
Destination IP	4.4.4.4
Source port	80
Destination port	22079
Layer 3 Protocol	TCP - 6
TOS Byte	0
Non-key Fields	Packet 2
Length	519

NetFlow Cache After Packet 1

Source IP	Dest. IP	Dest. I/F	Protocol	TOS	 Pkts
1.1.1.1	2.2.2.2	E1	6	0	 11000

NetFlow Cache After Packet 2

Source IP	Dest. IP	Dest. VF	Protocol	TOS	 Pkts
3.3.3.3	4.4.4.4	E1	6	0	 50
1.1.1.1	2.2.2.2	E1	6	0	 11000

Foundation: Metering Process Multiple Monitors with Unique Key Fields

Key Fields	Packet 1
Source IP	3.3.3.3
Destination IP	2.2.2.2
Source Port	23
Destination Port	22078
Layer 3 Protocol	TCP - 6
TOS Byte	0
Input Interface	Ethernet 0

Non-Key Fields
Packets
Bytes
Timestamps
Next Hop Address

Key Fields	Packet 1
Source IP	3.3.3.3
Destination IP	2.2.2.2
Input Interface	Gi0/1
SYN Flag	0

Non-Key Fields		
Packets		
Timestamps		

Traffic Analysis Cache

Source IP	Dest. IP	Source Port	Dest. Port	Protocol	тоѕ	Input I/F	 Pkts
3.3.3.3	2.2.2.2	23	22078	6	0	E0	 1100

Security Analysis Cache

Source IP	Dest. IP	Input I/F	Flag	 Pkts
3.3.3.3	2.2.2.2	Gi0/1	0	 11000

Foundation: Metering Process Cache Types

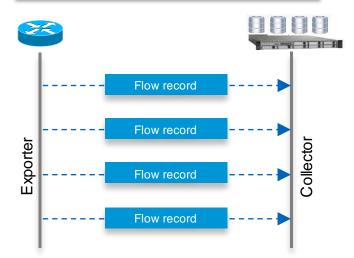
Normal

Immediate

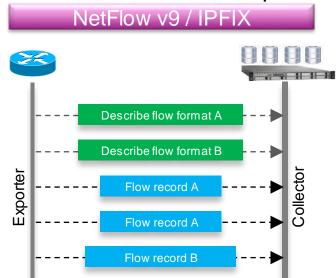
Permanent

Synchronised

Transaction-End


- Similar to today's NetFlow
- More flexible active and inactive timers: one second minimum
- Flow accounts for a single packet
- Desirable for real-time traffic monitoring, DDoS detection, logging
- Desirable when only very small flows are expected (ex: sampling)
- Caution: may result in a large amount of export data
- To track a set of flows without expiring the flows from the cache
- Entire cache is periodically exported (update timer)
- After the cache is full (size configurable), new flows will not be monitored
- Uses update counters rather than delta counters
- Exports on a regular basis
- Used by ART and Media
- A transaction is a set of logical exchanges between endpoints
- Generates the record in the NetFlow cache at the end of a transaction.

Foundation: Exporting Process NetFlow v9 and IPFIX


Static Flow Export Format

NetFlow Version 5

Fixed number of fields (18 fields)
 e.g. source/destination IP & port, input/output interfaces, packet/byte

Flexible & Extensible Flow Export Format

- Users define flow record format
- Flow format is communicated to collector

Foundation: Exporting Process Option Templates

- Use for exporting nontraffic related information to netflow collector or reporting tools.
- Available only with Flexible NetFlow

```
flow exporter MYEXPORTER
destination 10.35.89.59
source GigabitEthernet0/0/1
transport udp 2055
option interface-table timeout 300
option sampler-table timeout 300
option application-table timeout 300
```

```
router#show flow exporter MYEXPORTER templates
Flow Exporter insight:
 Client: Option options interface-table
 Exporter Format: NetFlow Version 9
 Template ID
               : 256
 Source ID : 6
 Record Size : 104
 Template layout
        Field
                       | Type | Offset | Size |
  | v9-scope system
   interface input snmp | 10 |
   interface name
                     l 82 l
   interface description |
```

Foundation: Exporting Process Available Option Template

Option Template	Definition		
application-table	NBAR Application ID to name mapping		
application-attributes	Application attributes definition per application		
c3pl-class-table	QoS class-map ID to name mapping		
c3pl-policy-table	QoS policy-map ID to name mapping		
exporter-stats	Exporter Statistics Option		
interface-table	Interface SNMP ifIndex to name mapping		
Sampler-table	Export Sampler Option		
sub-application-table	NBAR Sub-application ID to name mapping		
vrf-table	VRF ID to name mapping		
queue-id (hidden)	Queue index and queue drop information		

Note: Check the IOS release for exact support

What do we want to Monitor?

Application Conversation Traffic Stats Traffic Stats **Filters** Filters DNS/DHT Remaining traffic not included in other filters Traffic statistics Traffic statistics per application per application, client and server

URL Visibility

Filters

HTTP Traffic

 Sample traffic statistics, TCP performance and host/URL data per connection

Application Response Time

Filters

 Selected TCP Applications

 Traffic statistics and TCP performance metrics per application, client and server

Media Performance

Filters

RTP Applications

 Traffic statistics and media performance metrics per application, client and server

We Need More Metrics with Flexible NetFlow

Bytes, Packets, Routing Info (L3 to L4)

FNF

Application ID (L3 to L7)

+ NBAR2

Response Time

Network latency

Performance Metrics (e.g. MMON, ART)

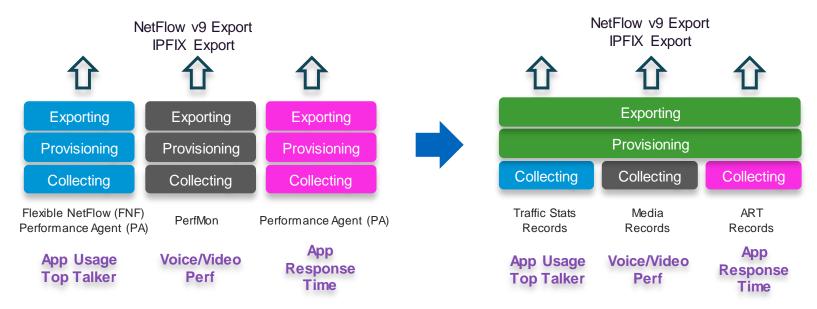
Network Metrics (e.g. QoS)

Unified Monitoring

Derived Metrics (e.g. URL Hit count)

Other Metrics (e.g. PfR)

Jitter QoS policy/classmap


Retransmission

NEW

Now Available on IOS and IOS-XE

Evolving to Unified Monitoring

- Certain metrics available for certain features.
 Multiple features to configure
- Separate provisioning
- This was the current model for IOS

- All metrics are available within single feature
- Single provisioning
- This is the current model for IOS XE.
- This is new in IOS 15.4(1)T

Unified Monitoring Metric Mediation Agent (MMA) – Overview

Prime Infrastructure Partners

Export NetFlow v9 or IPFIX Metrics Data

Application Recognition (NBAR2)

Deep Packet Inspection Engine identifying +1000 applications

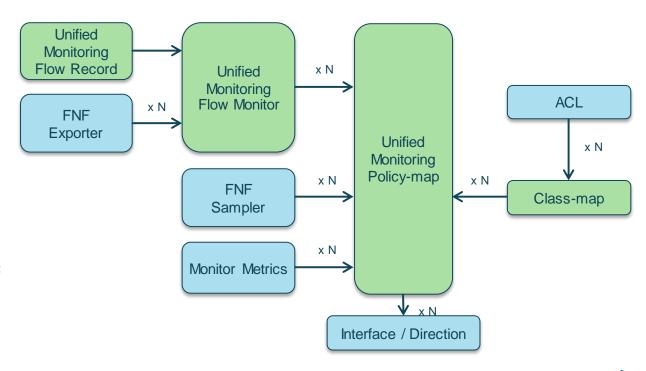
Metric Collection (MMA)

Correlation, Aggregation, Alerts
Flexible NetFlow

Metric Providers

Traffic Statistics
Application Response Time
Media Performance
URL Collection

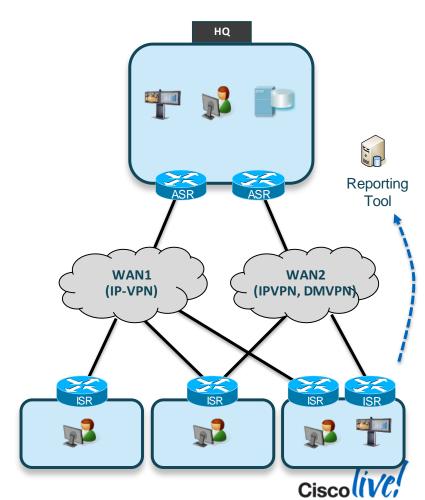
Control (QoS)

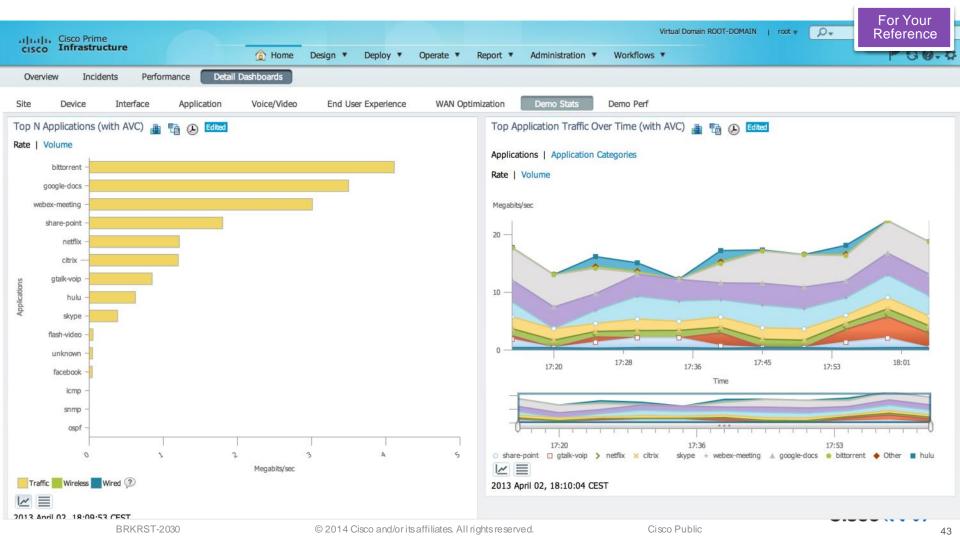


Unified Monitoring Metric Mediation Agent (MMA) – Provisioning

- Flexible, single monitoring policy for voice/video, application, traffic discovery
- Match traffic to monitor using L3, L4, or L7 information
- IPv4 and IPv6 supported
- Collect only relevant information for each traffic type
- Per traffic type sampling

1. Traffic Statistics

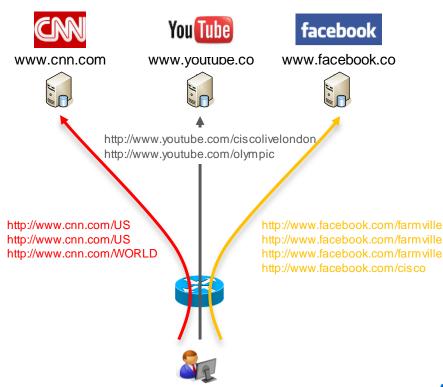

Application Usage


Key Features

- Feature to collect and export network information and statistics
- Flexibility in defining fields and flow record format
- NBAR2 Integration
 - Examines data from Layers 3 thru 7
 - Utilises Layers 3 and 4 plus packet inspection for classification
 - Stateful inspection of dynamic-port traffic
- IOS: FNF, PA or MMA
- IOS-XE: FNF or MMA
- Export: NFv9 or IPFIX

Benefits

- Visibility into application usage
- Monitors data in Layers 2 thru 7
- Capacity Planning
- Top-N applications
- Top-N clients and servers


2. URL Collection Top Domain, hit counts

Key Features

- Provide web browsing activity report
- Standard IPFIX export
- IOS: PA or MMA
- IOS-XE: MMA
- Utilise IPFIX Format which is extensible

Benefits

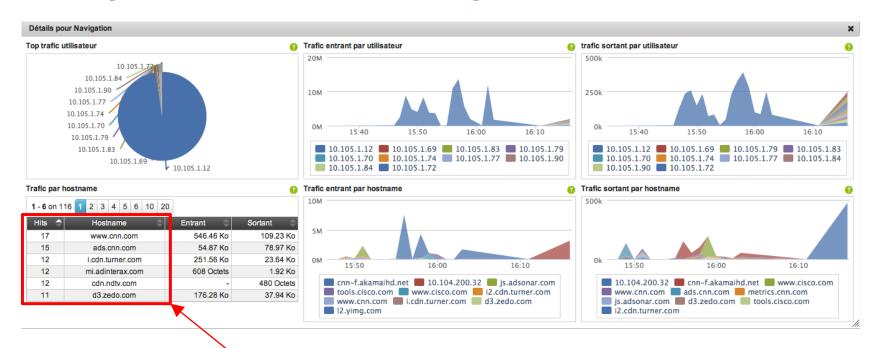
- Visibility into top domains
- Monitors data in Layers 2 thru 7
- Most visited web site
- Most visited URL per site
- How many hits for a particular domain extracted from HTTP request message

Top Domain and URL Hit Count ReportField Extraction Details – ISR-G2 with Performance Agent

Field Name	Field ID	Description	Value
application http host	45003	Host name	www.cnn.com
application http uri statistics	42125	List of URI	US\02WORLD\01
art count new connections	42050	Number of new connections	3

- Supported in Performance Agent (PA)
- Provide as a concatenated string that collects the hit count for first level URI and domain.
- Details:
 - ISR-G2: PA will collect and export URI and hit-count in the format "uri:count::uri:count....".
 - The delimiters colon (:) and double colon (::) are written here just for the demonstration of the format. The actual delimiter would be NULL (\0)
 - URI and count is always represented in binary format using fixed length 2bytes.
 - The URI being collected and exported is limited to the first '/'.

Top Domain and URL Hit Count ReportField Extraction Details – ASR1k/ISR-G2 with Unified Monitoring


Field Name	Field ID	Sub Application	Description	Value
application http host	45003	0x3402	Host name	www.cnn.com
application http url	45003	0x3401	URI	US
application http uri statistics	42125	-	List of URI	US\02WORLD\01

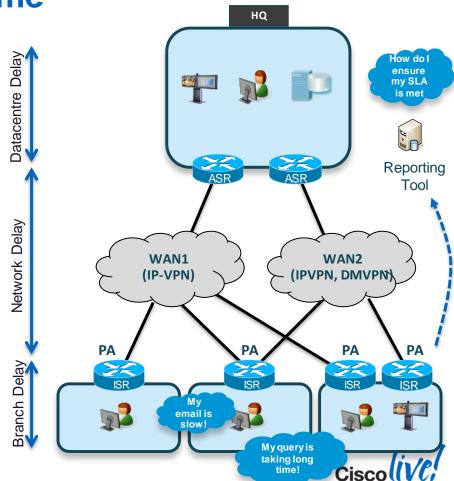
- Pre XE3.10 (Unified Monitoring)
 - Only URL and Host are supported.
 - In a typical configuration it should be exported using a connection/transaction records with export on transaction-end. So hit count =1, each URL is exported on a different record.
 - We will target to have nested monitors with structured data to export such metric with associated info (for example to add bytes/packets/art per URI and not only hits).

- XE3.10, XE3.11 (Unified Monitoring)
 - URI statistic field Supported
 - Allowed only in connection/transaction records so the hitcount is always 1.
 - The reason for adding this field is to limit the URL size.
- Post 3.11 (Unified Monitoring)
 - We will target to have nested monitors with structured data to export such metric with associated info (for example to add bytes/packets/art per URI and not only hits).

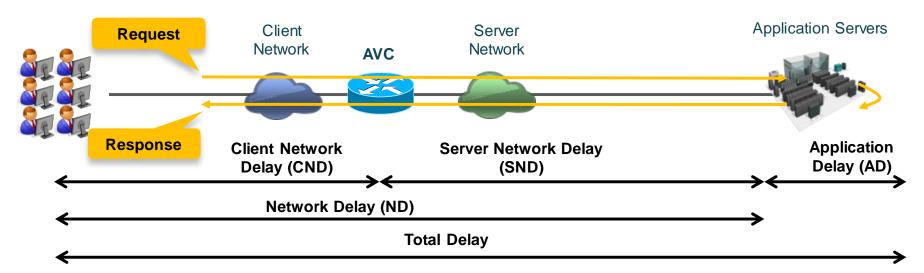
Example: URL Hit Count Report

How many hits for a particular domain – extracted from HTTP request message

3. Application Response Time


Measurement

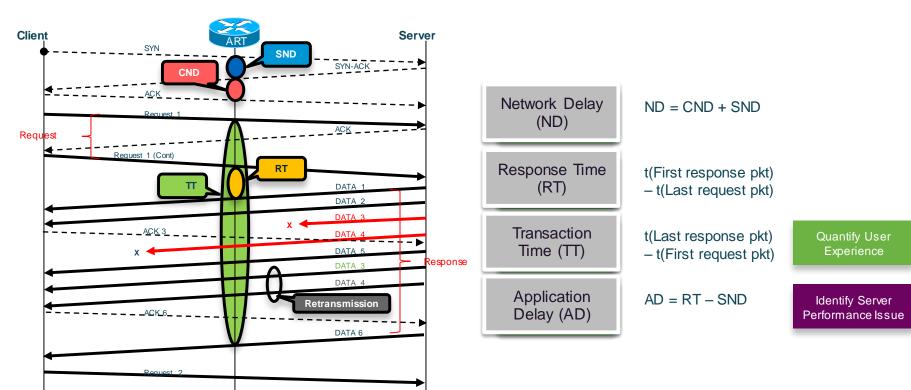
Key Features


- 27 Application Response Time (ART) Metrics
- Interact with NBAR2 for Application ID
- IOS: PA or MMA
- IOS-XE: MMA
- Export: NFv9 and IPFIX export

Benefits

- Visibility into application usage and performance
- Quantify user experience
- Troubleshoot application performance
- Track service levels for application delivery

Application Response Time Network Path Segments


- Application response time provides insight into application behaviour (network vs server bottleneck) to accelerate problem isolation
- Separate application delivery path into multiple segments
- Server Network Delay (SND) approximates WAN Delay
- Latency per application

BRKRST-2030

Cisco Public

Understand IOS ART Metrics Calculation

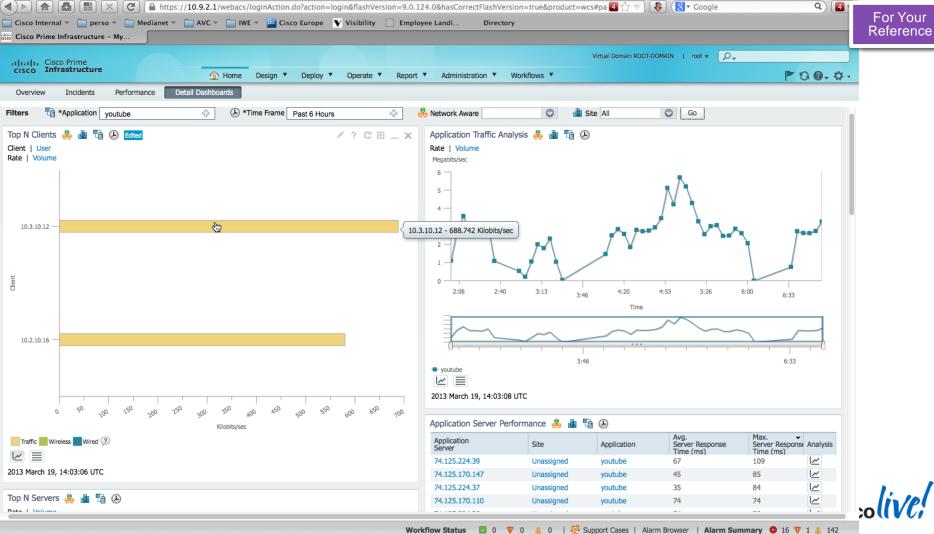
Cisco Public

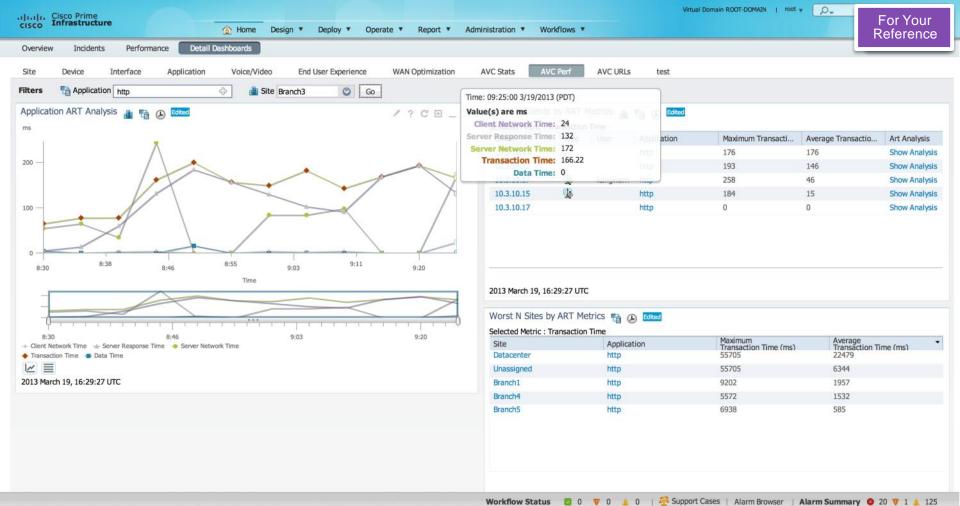
BRKRST-2030

Application Response Time

For Your Reference

Measurement





Screenshots: courtesy LivingObjects

BRKRST-2030

Cisco Public

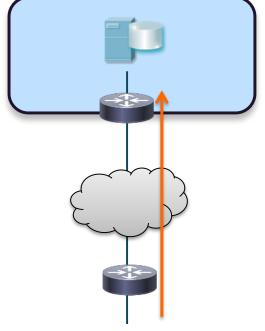
QoS Visibility

QoS Class-ID, Queue Drops and Queue Hierarchy

Applied Policy Map

policy-map P1 class C1 shaping average 16000000 service-policy child

policy-map child
class C11
bandwidth remaining percent 10
class C12
bandwidth remaining percent 70
class class-default
bandwidth remaining percent 20


class-map match-all C1
match any
class-map match-all C11
match ip dscp ef
class-map match-all C12
match ip dscp cs2

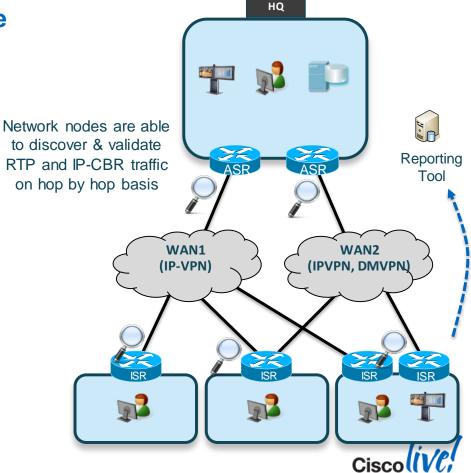
BRKRST-2030

In the Flow Record, collect policy qos class hierarchy collect policy qos queue drops

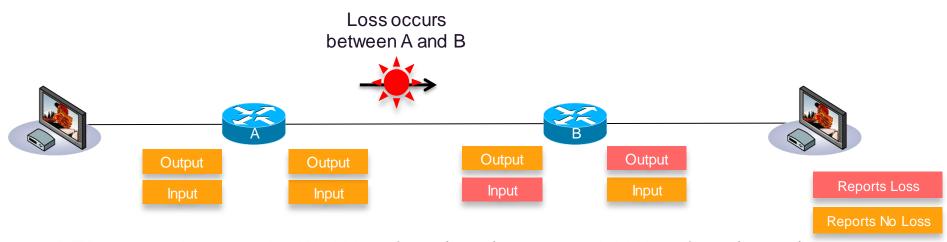
Flow	Hierarchy	Queue id
Flow 1	P1, C1, C11	1
Flow 2	P1, C1, C11	1
Flow 3	P1, C1, C12	2

Queue id	Queue packet drops
1	100
2	20

- For each flow, the class hierarchy and queue drops can now be exported through NetFlow
- Class-ID to Name mapping provided through separate Option Templates


4. Media Monitoring Monitor Voice and Video Performance

Key Features


- Monitor media performance metrics, i.e. jitter, loss
- Integrate with NBAR2 to identify applications
- Setting threshold and generating alert/alarm
- IOS: PerfMon or MMA
- IOS-XE: MMA
- Export: NFv9 or IPFIX export

Benefits

- Real-time monitoring of voice and video performance across network
- Accelerate troubleshooting identify what, where, when is the problem
- Proactive troubleshooting
- Validate SLA

Performance Monitor Understand RTP metrics

- RTP packet drops on the WAN interface (input) or on the LAN interface (output).
- Synchronisation source identifier (SSRC) to distinguish between different audio and video channels if they share the same UDP session (TP).
- RTP jitter values
- RTP payload type gives you an idea of the kind of media in an RTP stream

Media Performance Metrics

For reference, below is the record definition we use in current profile for Media (input):

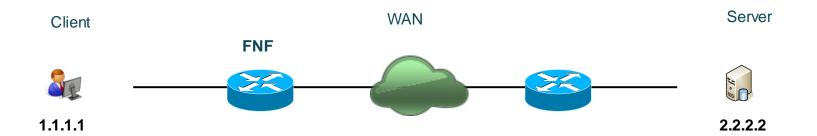
Key Fields

match ipv4 protocol
match ipv4 source address
match ipv4 destination address
match transport source-port
match transport destination-port
match transport rtp ssrc
match routing vrf output
match interface output

Non-Key Fields

collect routing vrf input

collect interface input collect application name collect ipv4 dscp collect datalink source-vlan-id collect connection initiator collect counter packets collect counter bytes long collect connection new-connections collect ipv4 ttl collect transport rtp payload-type collect transport rtp jitter mean sum collect transport rtp jitter maximum collect transport packets lost counter collect timestamp sys-uptime first collect timestamp sys-uptime last


Performance Monitoring (MMA)

Implementation and Configuration

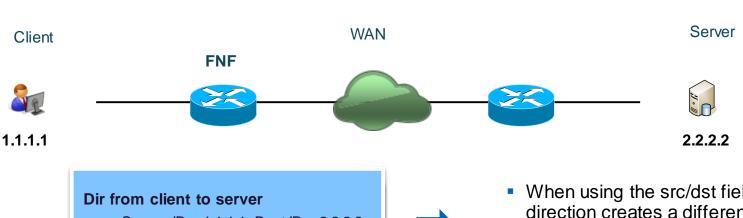
- CLI Define your own records, monitors, class-maps and policy-map
- Prime Infrastructure 2.0
- CLI Use ezPM with Cisco pre-defined profiles

Key FieldsSrc/Dest IP vs Connection

Key Fields

match ipv4 source address match ipv4 destination address match transport source-port match transport destination-port

or


Key Fields

match connection client ipv4 address match connection server ipv4 address <match connection client transport port> match connection server transport port

Client port can be omitted (don't provide much info)

Key FieldsSrc/Dest IP vs Connection

- Source IP = 1.1.1.1, Dest IP = 2.2.2.2
- Client IP = 1.1.1.1, Server IP = 2.2.2.2

- When using the src/dst fields, each direction creates a different record since the key is different. 2 records are created for each flow.
- When using the client/server fields, both directions results with the same key therefore one bi-dir record is created. 1 record is created for each flow.

Cisco Public

Dir from server to client

- Source IP = 2.2.2.2, Dest IP = 1.1.1.1
- Client IP = 1.1.1.1, Server IP = 2.2.2.2

Configuration Samples

- Conversation Traffic Stats for IPv4 and IPv6
- Application Response Time for IPv4 and IPv6
- Media Performance for IPv4 and IPv6

For Your Reference

Unified Monitoring PolicyConversation Traffic Stats

```
flow record type performance-monitor my-visibility-conv_ts_ipv4
description ezPM record
match routing vrf input
match ipv4 protocol
match application name account-on-reso
match connection client ipv4 address

flow record type perform
description ezPM record
match routing vrf input
match routing vrf input
```

match connection server ipv4 address match connection server transport port match services was segment account-on collect datalink source-vlan-id collect ipv4 dscp collect connection new-connections collect connection sum-duration

collect connection server counter byte

collect connection server counter pack

collect connection client counter byte

collect connection client counter pack

collect services waas passthrough-reas

[SNIP]

flow record type performance-monitor my-visibility-conv ts ipv6 description ezPM record match routing vrf input match ipv6 protocol match application name account-on-resolution match connection client ipv4 address match connection server ipv4 address match connection server transport port match services waas segment account-on-resolution collect datalink source-vlan-id collect ipv6 dscp collect connection new-connections collect connection sum-duration collect connection server counter bytes long collect connection server counter packets long collect connection client counter bytes long collect connection client counter packets long collect services waas passthrough-reason

[SNIP]

Unified Monitoring PolicyConversation Traffic Stats


```
flow monitor type performance-monitor my-visibility-conv_ts_ipv4

record my-visibility-conv_ts_ipv4

cache entries 156250

cache timeout synchronized 60

!
```

```
flow monitor type performance-monitor my-visibility-conv_ts_ipv6
record my-visibility-conv_ts_ipv6
cache entries 156250
cache timeout synchronized 60
!
```


For Your Reference

Unified Monitoring PolicyApplication Response Time

flow record type performance-monitor my-visibility-art_ipv4

```
description ezPM record
match routing vrf input
match ipv4 protocol
match application name account-on-reso
match connection client ipv4 address
match connection server ipv4 address
match connection server transport port
match services waas segment account-on
collect datalink source-vlan-id
collect ipv4 dscp
collect connection delay response to-s
collect connection server counter resp
collect connection delay response to-s
collect connection delay network to-se
collect connection delay network to-cl
```

[SNIP]

```
flow record type performance-monitor my-visibility-art ipv6
description ezPM record
match routing vrf input
match ipv6 protocol
match application name account-on-resolution
match connection client ipv6 address
match connection server transport port
match connection server ipv6 address
match services waas segment account-on-resolution
collect datalink source-vlan-id
 collect ipv6 dscp
 collect connection delay response to-server sum
 collect connection server counter responses
 collect connection delay response to-server histogram late
 collect connection delay network to-server sum
 collect connection delay network to-client sum
```

[SNIP]

Unified Monitoring Policy Application Response Time


```
flow monitor type performance-monitor my-visibility-art_ipv4
record my-visibility-art_ipv4
cache entries 56250
cache timeout synchronized 60
```

```
!
flow monitor type performance-monitor my-visibility-art_ipv6
record my-visibility-art_ipv6
cache entries 56250
cache timeout synchronized 60
!
```


For Your Reference

Unified Monitoring Policy Media Performance

```
flow record type performance-monitor my-visibility-media ipv4 in
description ezPM record
match routing vrf input
match ipv4 protocol
match ipv4 source address
match ipv4 destination address
match transport source-port
match transport destination-port
match transport rtp ssrc
match interface input
collect datalink source-vlan-id
collect ipv4 dscp
collect ipv4 ttl
 collect transport packets lost cour
collect transport rtp jitter maxim
 collect application name
collect connection new-connections
 collect transport rtp payload-type
collect transport rtp jitter mean
```

```
flow record type performance-monitor my-visibility-media ipv6 in
description ezPM record
match routing vrf input
match ipv6 protocol
match ipv6 source address
match ipv6 destination address
match transport source-port
match transport destination-port
match transport rtp ssrc
match interface input
collect datalink source-vlan-id
collect ipv6 dscp
collect ipv6 ttl
 collect transport packets lost counter
collect transport rtp jitter maximum
collect application name
collect connection new-connections
 collect transport rtp payload-type
 collect transport rtp jitter mean sum
```

[SNIP]

[SNIP]

Unified Monitoring Policy Media Performance


```
flow monitor type performance-monitor my-visibility-media_ipv4_in record my-visibility-media_ipv4_in cache entries 4000 cache timeout synchronized 60 history size 10
```

```
flow monitor type performance-monitor my-visibility-media_ipv6_in record my-visibility-media_ipv6_in cache entries 4000 cache timeout synchronized 60 history size 10
```


For Your Reference

Unified Monitoring Policy Class Maps

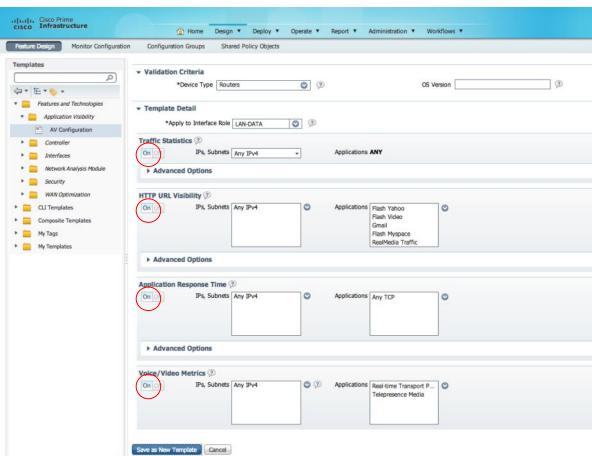
```
class-map match-all my-visibility-conv ts ipv4
match protocol ip
class-map match-all my-visibility-conv ts ipv6
match protocol ipv6
class-map match-all my-visibility-art ipv4
match access-group name my-visibility-art ipv4 tcp
class-map match-all my-visibility-art ipv6
match access-group name my-visibility-art ipv6 tcp
class-map match-any my-visibility-media app
match protocol telepresence-media
match protocol rtp
class-map match-all my-visibility-media ipv4 in
match access-group name my-visibility-media ipv4 udp
match class-map my-visibility-media app
class-map match-all my-visibility-media ipv4 out
match access-group name my-visibility-media ipv4 udp
match class-map my-visibility-media app
```

Define the Traffic you are interested in.

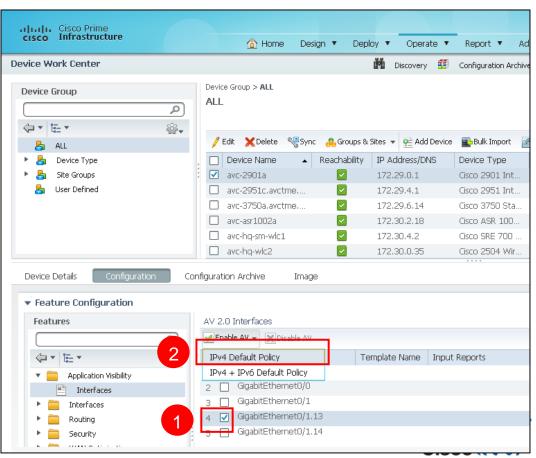
The Performance Monitors will be applied appropriately

Cisco Public

Unified Monitoring Policy Policy Maps


```
policy-map type performance-monitor my-visibility-in class my-visibility-art_ipv4
flow monitor my-visibility-art_ipv4
class my-visibility-art_ipv6
flow monitor my-visibility-art_ipv6
class my-visibility-media_ipv4_in
flow monitor my-visibility-media_ipv4_in
class my-visibility-media_ipv6_in
flow monitor my-visibility-media_ipv6_in
class my-visibility-conv_ts_ipv4
flow monitor my-visibility-conv_ts_ipv4
class my-visibility-conv_ts_ipv6
flow monitor my-visibility-conv_ts_ipv6
flow monitor my-visibility-conv_ts_ipv6
```

Apply the Performance Monitors to the appropriate class and then aplply the policy on the interface


AVC ConfigurationPrime Infrastructure

- Enable AVC with just ON/OFF button
- With Cisco Prime Infrastructure 2.0

AVC ConfigurationPrime AVC One-Click

- Enable AVC in one-click
 - One device at a time
- Two simple steps
 - 1. Select interface(s)
 - 2. Enable

IOS-XE: 3.10 IOS 15.4(1)T

AVC Configuration ezPM

Monitor Name	Default Traffic Classification
Application-Response-Time (ART)	All TCP
URL	HTTP applications
Media	RTP applications over UDP
Conversation-Traffic-Stats	Remaining traffic not matching other classifications
Application-Traffic-Stats	DNS and DHT

- Enable AVC and enable flexibility:
 - Configuring exporters
 - Enable / Disable various traffic-monitors (a.k.a tools)
 - For each traffic-monitor, override some default parameters (IPv4/6, Ingress/Egress, traffic to which the monitor is applied, cache size..)

ezPM

```
! User defined ezPM context
performance monitor context my-visibility profile application-experience
exporter destination 10.10.10.10 source GigabitEthernet0/0/1
traffic-monitor all
!
! Attach the context to the interface
interface GigabitEthernet0/0/2
performance monitor context my-visibility
!
```

- Equivalent to ~650 lines of configuration
- Records/Monitors/Class-maps/Policy-map pre-defined

Summary – AVC Monitoring for IOS

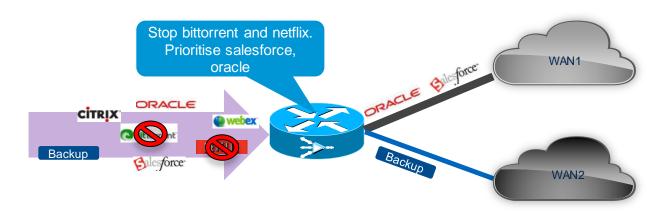
Implementation Options

What to Monitor	Option1 What to Configure	Option2 What to Configure	Option3 What to Configure New – IOS 15.4(1)T	
Application Usage, Top Talkers	Flexible NetFlow	Performance Agent	Performance Monitor (traffic-stats)	
Application Response Time	Performance Agent	Performance Agent	Performance Monitor (application-response-time)	
Voice & Video Performance	Media Monitor	Media Monitor	Performance Monitor (media)	

Summary – AVC Monitoring for IOS-XE

Implementation Options

What to Monitor	Option1 What to Configure	Option2 What to Configure		
Application Usage, Top Talkers	Flexible NetFlow	Performance Monitor (traffic-stats)		
Application Response Time	Performance Monitor (application-response-time)	Performance Monitor (application-response-time)		
Voice & Video Performance	Performance Monitor (media)	Performance Monitor (media)		



CONTROL

QoS and Performance Routing (PfR)

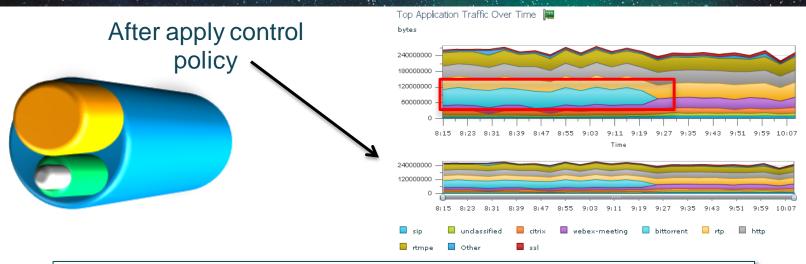
Maximise Application Performance

Controls application bandwidth usage and selects optimal path

Application-aware QoS

Identify 1000+ applications using NBAR2 and control bandwidth with Cisco industry leading QoS

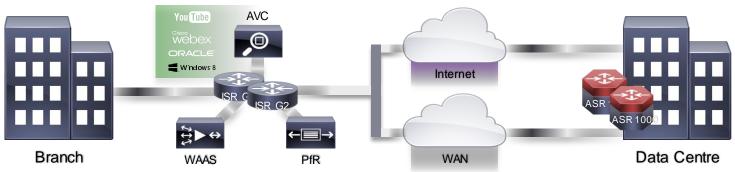
Limit unwanted traffic and prioritise critical applications


Intelligent Path Selection

Deliver critical applications over the path which can meet application performance requirement using PfR

Automatic load share to maximise bandwidth use on available links

Example: Stop P2P Applications with AVC

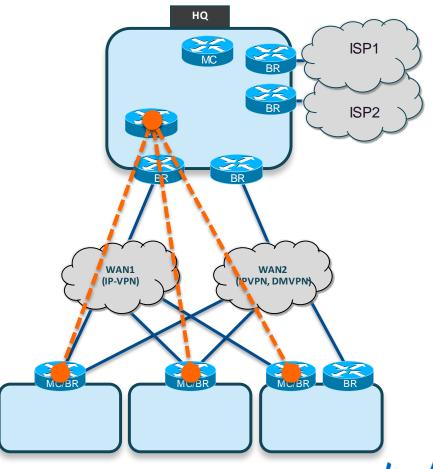



```
class-map match-any bittorrent
match protocol attribute sub-category p2p-file-transfer
match protocol bittorrent-networking
match protocol dht
policy-map drop-bittorrent
class bittorrent
police 8000 conform-action drop exceed-action drop violate-action drop
interface GigabitEthernet0/0/0
service-policy input drop-bittorrent
service-policy output drop-bittorrent
```

Performance Routing Intelligent Path Control

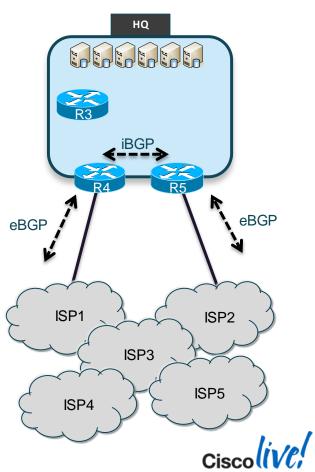
- Lower WAN Costs
- Increasing use of Internet based WAN
- Full Utilisation of expensive WAN bandwidth
 - Efficient distribution of traffic based upon load, circuit cost and path preference

- Improved Application Performance
 Per application best path based on delay, loss, jitter measurements
- Increased Application Availability
 Protection from carrier black holes and brownouts


Performance Routing Topologies

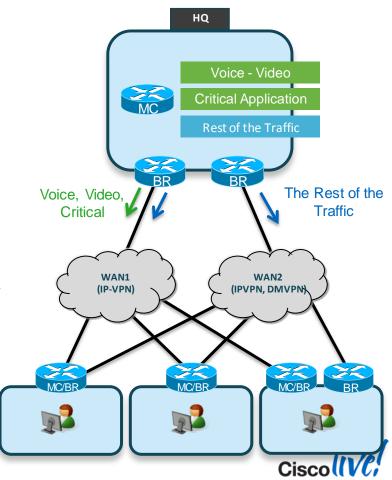
- IPv4 only (IPv6 support future)
- MC on all sites Distributed Model
- MC controls local BRs only
- Optimise by:
 - Reachability, Loss,
 - Delay, Jitter, MOS,
 - Throughput, Load, and/or \$Cost

Performance Routing Peering & Discovery


- Enterprise Domain
- Multisite MC Peering Framework
- MC to MC Peering Framework can be used to exchange policies, services and feedback
- Remote Site Discovery
 - Automatic discovery of branch routers
 - Simplifies Configuration prefix and target discovery
 - Probing Efficiency sharing of probe data across policies
 - Enhance PfR remote site bandwidth discovery

Automatic Traffic Engineering

- Problem Statement
 - Ingress/Egress path are under/over utilised
 - Maximise bandwidth utilisation (uplinks with different BW)
- Solution: PfR used to load balance the traffic
 - New default policies based on load-balancing
 - Cisco ASR1k is typical BR/MC with BR terminating WAN connections
 - BGP routing
 - BRs must be iBGP peers
 - Default routing or
 - Partial routes or
 - Full routes

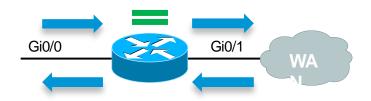

Enterprise WAN Use Case Blackout and Brownout

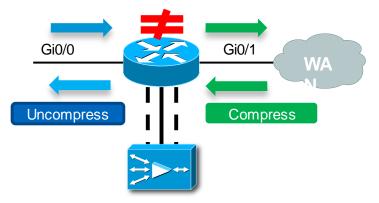
Problem Statement

- Recent carrier routing problem cause a network outage (Blackout).
- Fluctuating performance over the WAN is causing intermittent application problems (Brownout)
- Secondary/Backup WAN path under utilised

Solution: PfR Application based optimisation

- Protect Voice and Video traffic:
 - primary path, check delay, loss, jitter fallback secondary
- Protect Business Applications:
 - primary path, check loss, utilisation fallback secondary
- Best effort Applications Maximise bandwidth utilisation:
 - load balanced across SPs or use the secondary path

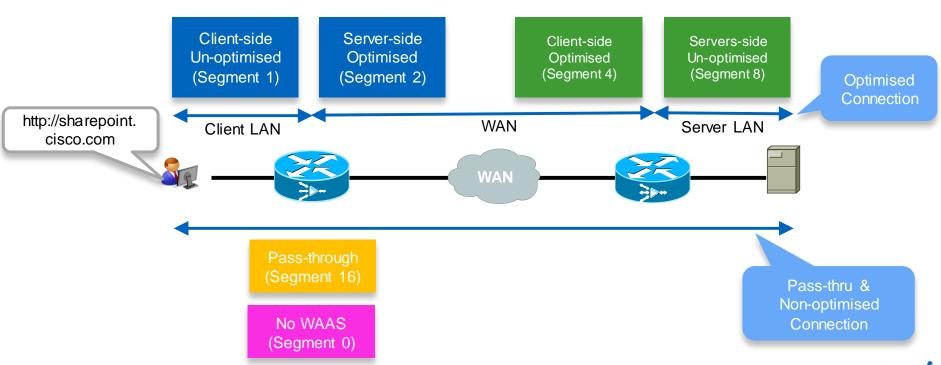



WAAS

Traffic Visibility Through FNF with WAAS Overview

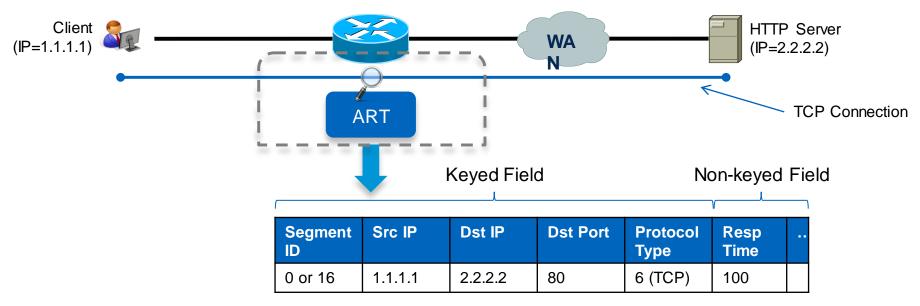
- Ingress FNF on all interfaces is sufficient
 - LAN in traffic = WAN out traffic
 - WAN In traffic = LAN out traffic

After WAAS (with offpath redirection)


Ingress FNF on all interfaces will give wrong results

LAN in traffic > WAN out traffic

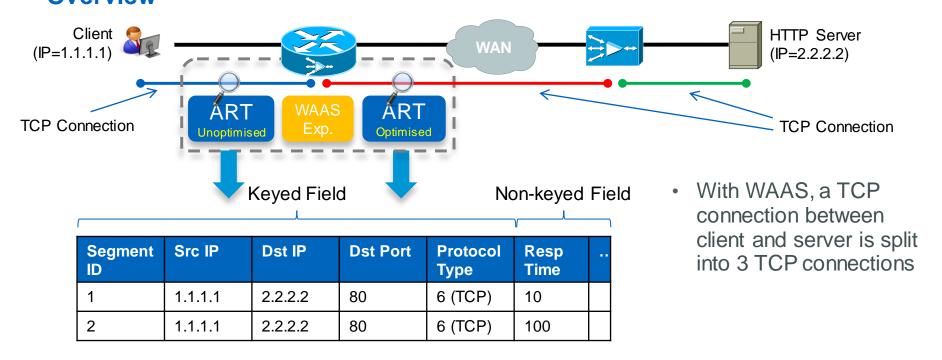
LAN out traffic > WAN in traffic


 WAAS requires FNF on both ingress and egress of the same interfaces

WAAS Segment

PA Monitoring & Export without WAAS

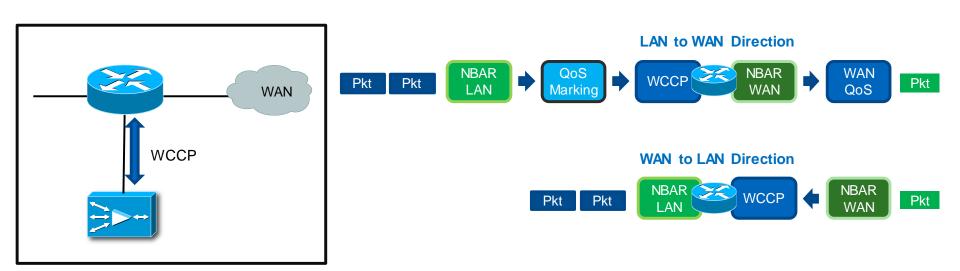
Overview



- Without WAAS, there is only one TCP segment seen by the router
- Segment ID of 0 indicates no WAAS
- Segment ID of 16 indicates pass-through

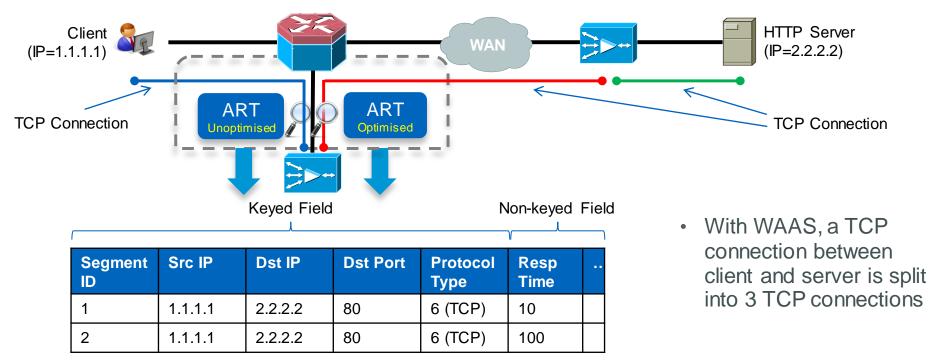
BRKRST-2030

PA Monitoring & Export with WAAS Express Overview

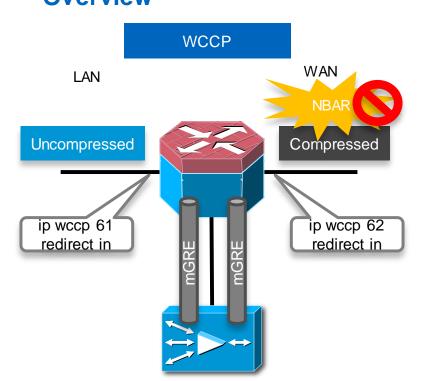


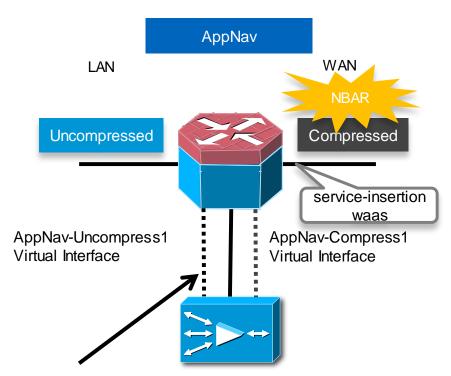
- With WAAS Express, ART monitors both Un-optimised and Optimised segments
- Each device (branch and headend) exports two records per TCP connection

BRKRST-2030


WAN Optimisation Packet Path with WCCP

- Need to decide where is the best place to run NBAR
- Running NBAR on the WAN side is not desirable because NBAR will see compressed traffic
- Where should I run NBAR if I want application-aware QoS when WAAS is present?




ART Monitoring & Export with AppNav in ASR1K

- AppNav creates two logical interfaces, AppNav-Uncompress and AppNav-Compress
- ART monitors traffic on the AppNav logical interfaces and export two records

How AppNav Address NBAR2 & WAAS Interop? Overview

If NBAR is enabled on WAN interface, and WAAS is enabled, automatically run NBAR on Uncompress Virtual Interface

Performance Tests

IOS Platforms – Traffic Profiles

- Stateful Traffic profile with enterprise branch application mix
- Throughput is measured as NDC (No Drop Connection)
- Average packet size: 390 bytes
- 30% of BW is upload, 70% of BW is download

Applications	% Bandwidth
VoIP g.729 (~28 Kbps)	10%
H.264 CIF Video (312 Kbps)	20%
Oracle	2.8%
Citrix ICA	3%
HTTP Applications	30%
HTTP Browsing (32K)	10%
HTTPS	10%
MS Exchange	5%
Streaming Video (160K and 250K)	5%
SMTP	2%
POP3	2%
DNS	0.2%

IOS Platforms – Test Configurations

	Config A Application aware QoS (without reporting)	Config B Application aware QoS (with reporting)	Config C Application Performance metrics
NBAR2	Yes	Yes	Yes
FNF – Traffic Usage	No	Yes	Yes
TCP Performance metrics (ART)	No	No	Yes
Media Monitoring	No	No	Yes
NBAR2 based QoS	Yes	Yes	Yes

IOS Platforms – Test Results

G2 Platform	A	В	С	
	Throughput	Throughput	Throughput	
	(Mbps)	(Mbps)	(Mbps)	
3945e	705	351	184	
3925e	428	253	151	
3945	268	114	71	
3925	225.3	92	60.8	
2951	162	75	48	
2921	112	53	37	
2911	87	40	32	
2901	81	41	25.6	
1941	78	41	28	

IOS-XE Platforms – Traffic Profiles

- Stateful Traffic profile with enterprise application mix modified for WAN aggregation
- Throughput measured @ 90% data plane CPU
- Average packet size: 550 bytes

Applications	% Bandwidth
VoIP g.729 (~28 Kbps)	3%
H.264 CIF Video (312 Kbps)	20%
Oracle	2.8%
Citrix ICA	3%
HTTP Applications	22%
HTTP Browsing (32K)	22%
HTTPS	10%
MS Exchange	3%
Streaming Video (160K and 250K)	5%
SMTP	0.5%
POP3	0.5%
DNS	0.2%

IOS-XE Platforms – Test Configurations

	Config A Application QoS	Config B Application QoS + App Usage	Config C Application QoS + App Usage + App Performance	
NBAR2	Yes	Yes	Yes	
HQoS (with NBAR2)	Yes	Yes	Yes	
Traffic stats flow records in unified monitoring	No	Yes	Yes	
ART flow records in unified monitoring	No	No	Yes	
Media flow records in unified monitoring	No	No	Yes	

IOS-XE Platforms – Test Results

XE Platform	Α	В	С		
	Throughput (Gbps)	Throughput (Gbps)	Throughput (Gbps)		
4451-X	1.4	0.9	0.7		
ASR1001	4.1	2.4	2.1		
ESP5	5.0	1.4	1.2		
ESP10	10.0	2.8	2.5		
ESP20	20.0	5.6	4.9		
ESP40	23.8	4.9	4.7		
Kingpin	17.7	12.4	10.9		
ESP100	64.8	14.3	8.2		

Conclusion

AVC Network Management – What is Available?

AVC Cisco Developer Network Site: http://developer.cisco.com/web/avc

Vendor		NBAR2	Field Extraction	URL Hit Count	MMON	ART	PfR	QoS Class	Multi- tenant
Cisco Prime	IOS	▼			✓	V			
Infrastructure 2.0	XE	V			V	V			
ActionPacked	IOS	$\overline{\checkmark}$			✓	$\overline{\checkmark}$	$\overline{\checkmark}$	✓	
LiveAction V3.x	XE	☑ (MIBs)			V	V	V	V	
Plixer Scrutiniser	IOS	$\overline{\checkmark}$			V	V	V		
	XE				V		V		
	IOS	V		V		V			$\overline{\checkmark}$
	XE			V		V			$\overline{\checkmark}$
InfoVista SDM 3.3 5View 6.3	IOS	$\overline{\checkmark}$				$\overline{\checkmark}$			$\overline{\checkmark}$
	XE								
Insight v4.0	IOS	I				V			
	XE	V							

Key Takeaway

What can AVC do for me?

Identify various applications in my network

Collect traffic information and performance metrics without hardware probe

Provide data for proactive monitoring and troubleshooting

Tune my network to improve application performance

How?

NBAR2 uses DPI to identify 1000+ applications

Embedded monitoring exports information in standard NFv9 or IPFIX format

Both Cisco Prime Infrastructure and 3rd party are supported

Application-aware QoS leveraging NBAR2 to identify applications – PfR Path Control

Technical References

Application Visibility and Control

- http://www.cisco.com/go/avcportal
- http://www.cisco.com/go/pfr

Docwiki.cisco.com

- AVC: http://docwiki.cisco.com/wiki/AVC:Home
- PfR: http://docwiki.cisco.com/wiki/PfR:Home

AVC Solution Guide for IOS-XE

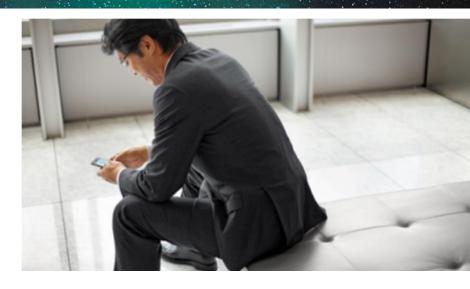
- http://www.cisco.com/en/US/docs/ios/solutions_docs/avc/ios_xe3_8/avc_soln_guide_iosxe3_8.html
- http://www.cisco.com/en/US/docs/ios/solutions_docs/avc/ios_xe3_9/avc_soln_guide_iosxe3_9.html
- http://www.cisco.com/en/US/partner/docs/ios/solutions_docs/avc/ios_xe3_10/avc_config.html

NBAR

- http://www.cisco.com/en/US/partner/docs/ios/ios_xe/qos/configuration/guide/clsfy_traffic_nbar_xe.html
- AVC Cisco Developer Network (CDN)
 - http://developer.cisco.com/web/avc

Ciscolive!

Q & A


Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations.

www.CiscoLiveAPAC.com

CISCO_{TM}