TOMORROW starts here.

Intelligent WAN - Internet as the Enterprise WAN Carriage

BRKRST-2642

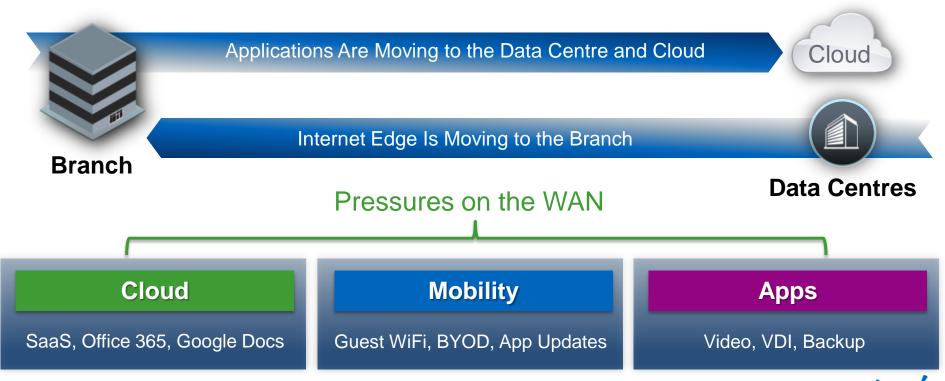
Brad Ford Systems Engineer

Agenda

- IWAN Introduction and Business Drivers
- Transport-Independent Design
- Intelligent Path Control
- Security Connectivity
- Application Optimisation
- Management and Simplification

Explosion of Data Outside of Your Headquarters

Internet of Things


Mobility

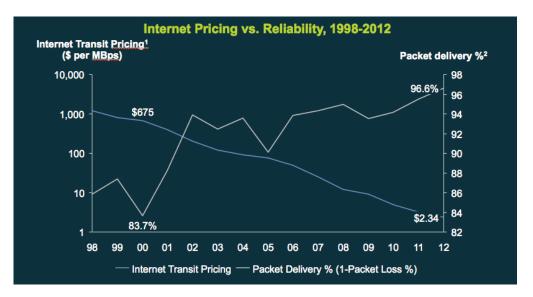
Video

Emerging Branch Demands

The Application Landscape Is Changing

The Branch Conundrum

Time to Rethink your Branch-WAN Strategy

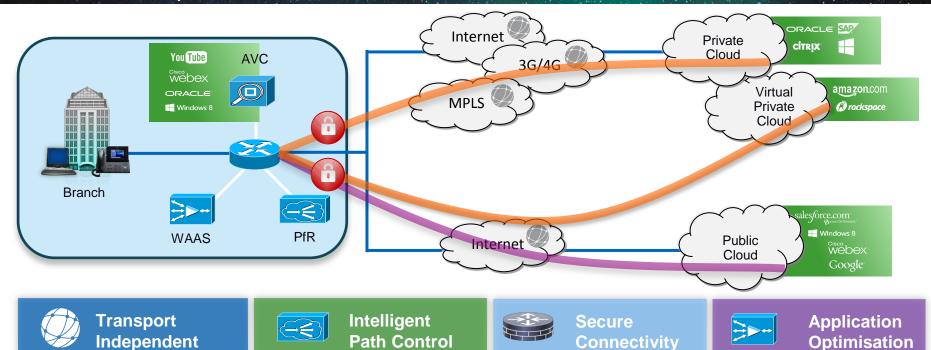


Internet Price vs Risk Improves Every Year

Low Cost Alternative

46%

of Organisations Are
Planning to
Transition to Internet
Connections


- Internet Transit Pricing based on surveys and informal data collection primarily from Internet Operations Forums—'street pricing' estimates
- 2. Packet delivery based on 15 years of ping data from PingER for WORLD (global server sample) from

EDU.STANFORD.SLAC IN CAIRORNIA Source: William Norton (DrPeering net): Stanford ping end-to-end reporting (F

Cisco Intelligent WAN

Solution Components

Simplified Provisioning and Deployment

Transport-Independent Design

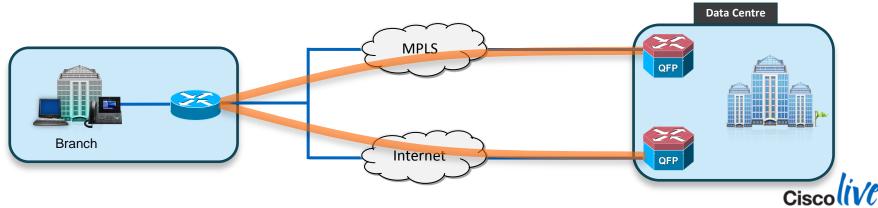
Secure WAN Design Over Any Transport Dynamic Multipoint VPN (DMVPN)

Transport-Independent

Simplifies WAN Design

- Easy multi-homing over any carrier service offering
- Single routing control plane with minimal peering to the provider

Flexible


Dynamic Full-Meshed Connectivity

- Consistent design over all transports
- Automatic site-to-site tunnels
- Zero-touch hub configuration for new spokes

Secure

Proven Robust Security

- Certified crypto and firewall for compliance
- Scalable design with highperformance crypto in hardware

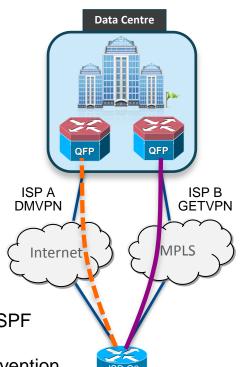
Hybrid WAN Designs

Active/Standby
WAN Paths
Primary With Backup

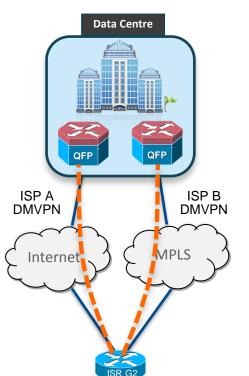
Two IPsec Technologies

GETVPN over MPLS DMVPN over Internet

Two WAN Routing Domains


MPLS: eBGP or Static

Internet: iBGP, EIGRP or OSPF


Route Redistribution

Route Filtering for Loop Prevention

TRADITIONAL HYBRID

RECOMMENDED HYBRID

Active/Active WAN Paths

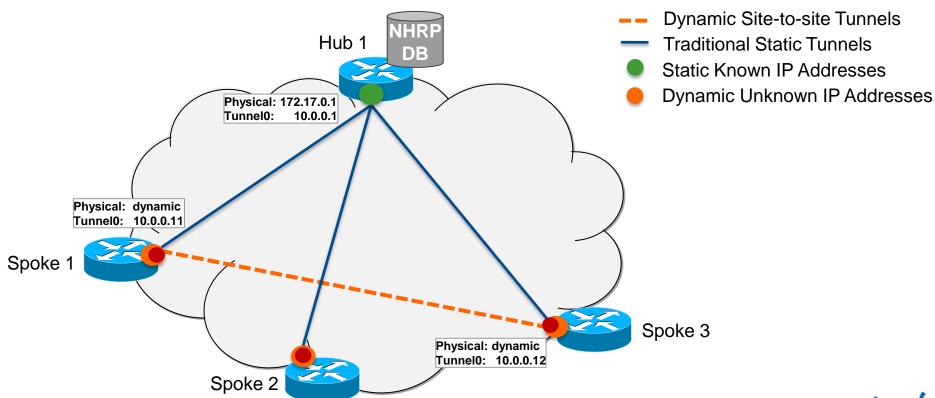
One IPsec Overlay DMVPN

One WAN Routing Domain iBGP, EIGRP or OSPF

What is Dynamic Multipoint VPN?

DMVPN is a Cisco IOS software solution for building IPsec+GRE VPNs in an easy, dynamic and scalable manner

- Relies on two proven technologies
 - Next Hop Resolution Protocol (NHRP)
 - Creates a distributed mapping database of VPN (tunnel interface) to real (public interface) addresses
 - Multipoint GRE Tunnel Interface
 - Single GRE interface to support multiple GRE/IPsec tunnels and endpoints
 - Simplifies size and complexity of configuration
 - Supports dynamic tunnel creation



DMVPN Phases

Phase 1 – 12.2(13)T	Phase 2 – 12.3(4)T	Phase 3 – 12.4.(6)T
 Hub and spoke functionality p-pGRE interface on spokes, mGRE on hubs Simplified and smaller 	 Phase 1+ Spoke to spoke functionality mGRE interface on spokes Direct spoke to spoke data 	 Phase 2+ More network designs and greater scaling Same Spoke to Hub ratio
configuration on hubs Support dynamically addressed CPEs (NAT)	 traffic reduces load on hubs Hubs must interconnect in daisy-chain Spoke must have full 	 No hub daisy-chain Spokes don't need full routing table – can summarise
Support for routing protocols and multicastSpokes don't need full	routing table – no summarisation	 Spoke-spoke tunnel triggered by hubs
routing table – can summarise on hubs	 Spoke-spoke tunnel triggered by spoke itself Routing protocol scale limitations 	 Removes routing protocol limitations NHRP routes/next-hops in RIB (15, 2(1)T)

DMVPN How it Works

Traditional WAN to Internet Based WAN Transition

Migration Steps

Adding DMVPN to MPLS WAN

Replacing a MPLS service with an Internet service

Other interesting IWAN Topologies

Transport Best Practices

Private peering with Internet providers

- Use same Internet provider for hub and spoke sites
- Avoids Internet Exchange bottlenecks between providers
- Reduces round trip latency

DMVPN

- DMVPN Phase 2 for dynamic tunnels with PfR
- Separate DMVPN network per provider for path diversity
- Per Tunnel QoS

Transport settings

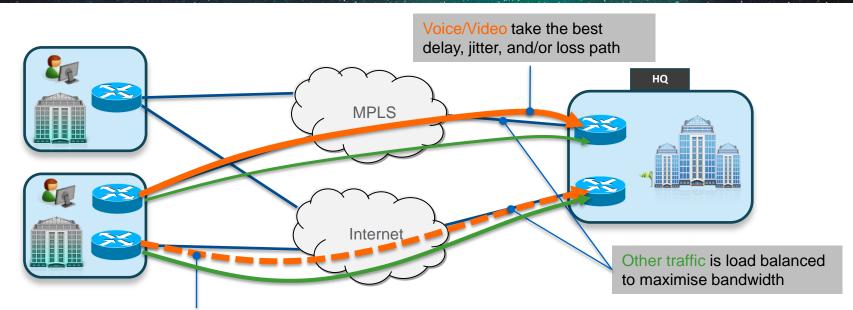
- Use the same MTU size on all WAN paths
- Bandwidth settings should match offered rate
- Use a front-side VRF to separate Internet and internal default routes

Internet security

- Use access-lists or firewalls to only permit DMVPN tunnel traffic
- Hub Tunnel IP address should not be registered in DNS to hide it

Routing Overlay

- iBGP or EIGRP for high scale (1000+ sites)
- Single routing process, simplified design



Intelligent Path Control

Intelligent Path Control with PfR

Voice/Video will be rerouted if the current path degrades below policy thresholds

- PfR monitors network performance and routes applications based on application performance policies
- PfR load balances traffic based upon link utilisation levels to efficiently utilise all available WAN bandwidth

What Is Performance Routing (PfR)?

Tooling for Intelligent Path Control

"Performance Routing (PfR) provides additional intelligence to classic routing technologies to track the performance of, or verify the quality of, a path between two devices over a Wide Area Networking (WAN) infrastructure to determine the best egress or ingress path for application traffic...."

Cisco IOS technology

PfR vs Classical Routing

CLASSICAL

- Topological state
- Least cost path
- Static user preference

Metrics

Adaptive

Path Control

Responds To:

Path cost

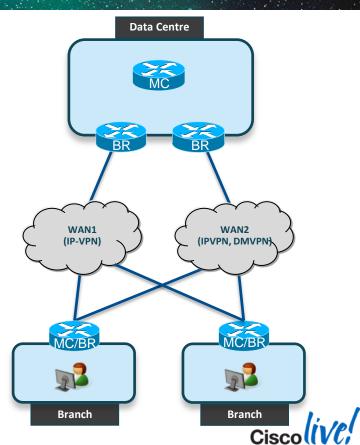
Interface state

Link and node state changes (up/down)

PfR

- Application-aware
- Policy controlled
- Measured performance

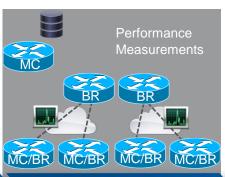
- Delay
- Jitter
- Bandwidth

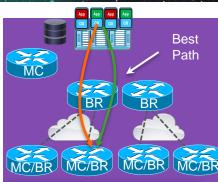

Responds To:

 Measured performance changes (degradation)

Performance Routing Components

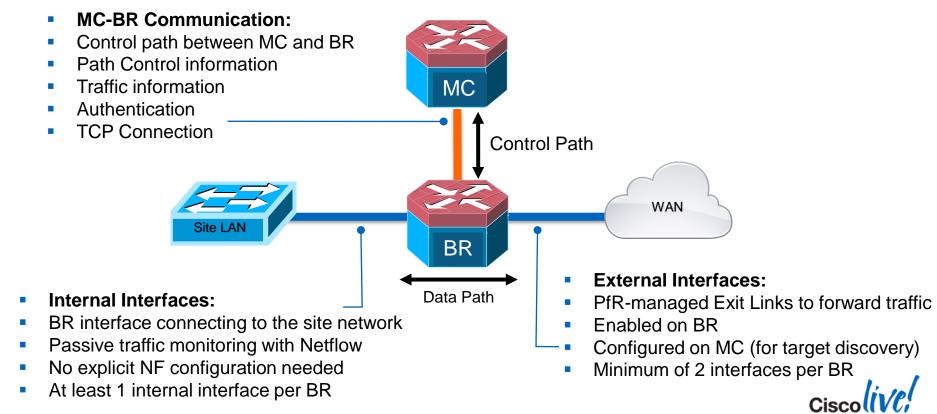
- The Decision Maker: Master Controller (MC)
 - Apply policy, verification, reporting
 - No packet forwarding/ inspection required
- The Forwarding Path: Border Router (BR)
 - Gain network visibility in forwarding path (learn, measure)
 - Enforce MC's decision (path enforcement)
- Optimise By:
 - Reachability, Delay, Loss, Jitter, MOS
 - Throughput, Load, and/or \$Cost




How PfR Works

Learn the Traffic

Define Your Traffic Policy


Identify Traffic Classes based on Applications or Transport Classifiers ISR G2 and ASR Learn traffic classes flowing through BRs based on your policy definitions Measurement

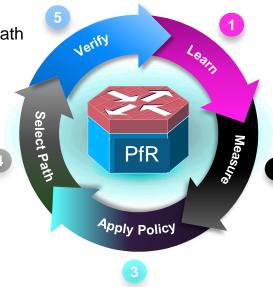
Measure the traffic flow and network performance actively or passively and report metrics to the MC **Path Enforcement**

Master Controller commands path changes based on your traffic policy definitions

PfR Interface Definitions and Relationships

Performance Routing

Control Loop


5. Verify New Path:

Verify traffic is flowing on new path

 Revert to previous path if performance remains out-of-policy

4. Select Path:

- Direct BRs for each traffic class
- BRs inject best path into FIB
- Gather new path performance info

1. Learn Your Traffic Classes:

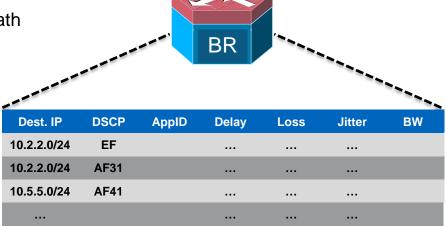
- Prefix-based flows
- ACL-based flows
- Application flows

2. Measure:

- Network Performance
 - Passive: Netflow Data (Throughput)
 - Active: IPSLA Probes (Jitter, Delay)
- Network Availability
 - Reachability and Topology Info
 - Derived from Routing Processes

3. Apply Your Traffic Policy:

Evaluate performance policies to Traffic Class measurement

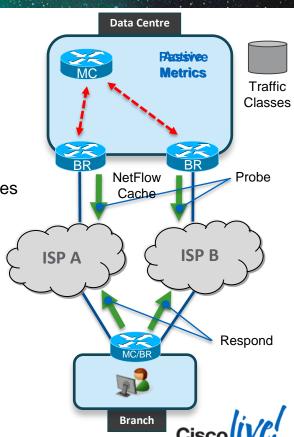

Learning Traffic Classes (TCs)

PfR Operates on Traffic Classes flowing through BRs

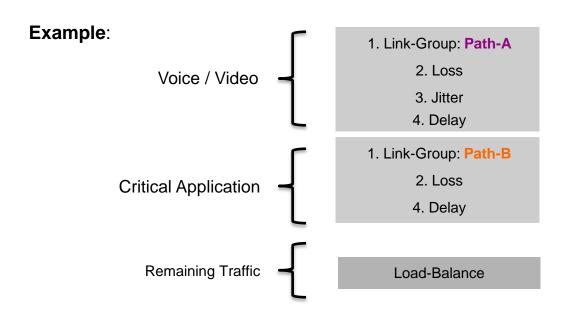
 A traffic class is a subset of the traffic defined by policy that is to be optimised

Traffic Class performance metrics are collected per path

- PfR can learn traffic classes in two ways
 - Automatic: dynamically learn flows that match TC definitions
 - Configuration: user defined traffic classes and prefixes to optimise
- Traffic classes can be identified using:
 - IP prefixes
 - ACL classes (e.g., well-known ports, CoS markings)
 - Application classes (e.g NBAR)


Example of a Traffic Class List

Measuring Network and Application Performance


- Passive Measurement
 - For Data or Best Effort Applications
 - Ingress/Egress Bandwidth and TCP Loss and Delay derived from Netflow
- Active Measurement
 - For Video, Voice and delay sensitive data applications
 - Path Jitter, Delay, Loss and MOS derived from IPSLA synthetic traffic probes
- PfR automatically enables Netflow and IPSLA
- MC Performance Database to determine Policy Enforcement actions

Destination Prefix	DSCP	App Id	Delay	Jitter	Loss	Ingress BW	Egress BW	BR	Exit
10.1.1.1/32	EF		60	10	0	20	40	BR1	Gi1/1
10.1.10.0/24	AF31		110	15	0	52	60	BR1	Gi1/2
•••	0		89	26	1	34	10	BR2	Gi1/1

Defining Application Performance Policy

- Choose your policy actions for various traffic classes
- Alternate path selection based on flexible criteria

FLEXIBLE CRITERIA

Application Performance

Reachability

Delay

Loss

MOS

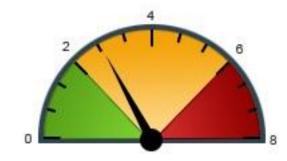
Jitter

Link

Load Balancing

Max Utilisation

Link-Group Path Preference


Bandwidth Costs (\$)

BRKRST-2642

Load Balancing

- External link Load Balancing is enabled by default
- PfR Distributes traffic across a set of links to maintain efficient utilisation levels with a defined percentage range. Default utilisation range is +/- 20%
- External links can have different available bandwidth e.g., Int 1/0 = 1.5Mbps, Int 1/1 = 15Mbps
- Load Balancing defaults can be modified by CLI
 - Utilisation Range
 - Max Utilisation 90%

Path Enforcement

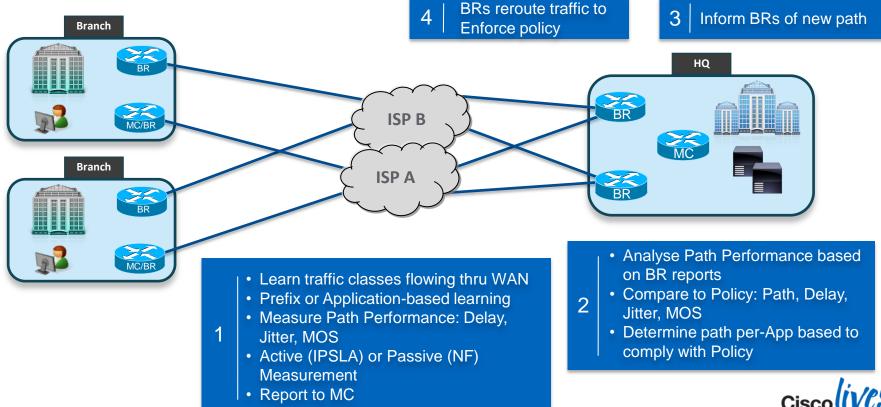
- Master controller monitors traffic classes and BR exit links for out-of-policy conditions
- Appropriate enforcement method is determined automatically by the MC
- MC commands the BRs to enforce path changes for policy compliance

Destination Prefix

• BGP

Egress: Route injection or BGP Local Preference attribute

Ingress: BGP AS-PATH Prepend or AS Community

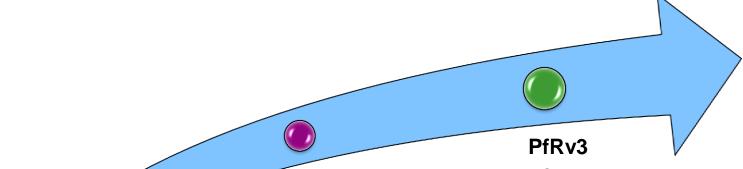

- EIGRP Route injection
- Static Route injection
- Protocol Independent Route Optimisation (PIRO) with PBR injection

Application

- Dynamic PBR
- NBAR/CCE

Intelligent Path Control Putting It Together

PfR Scale and Performance


	Scale	Notes
Typical Policies	2 TCs per site 650 Branches	Sufficient for protecting Voice/Video TC and load balancing all data traffic
Advanced Policies	4 TCs per site 300 Branches	Multiple application policies and load balancing
Max TCs	18K concurrent	ASR1002-X highest scale MC and BR

Recommended Hardware				
Hub or DC	ASR1002-X	Dedicated PfR MC, PfR BR+DMVPN Hub		
Hub or DC	ISR 3945E	Dedicated IPSLA shadow router		
Branch	ISR 892 FSP ISR1900 or better ASR1001or better	Branch MC/BR+DMVPN spoke		

PfR Evolution

Focusing on simplification and scale

PfR/OER

- Internet Edge
- Basic WAN
- Provisioning per site per policy
- 1000s of lines of config

PfRv2

- Policy simplification
- App Path Selection
- Blackout ~6s
- Brownout ~9s
- Scale 500 sites
- 10s of lines of config

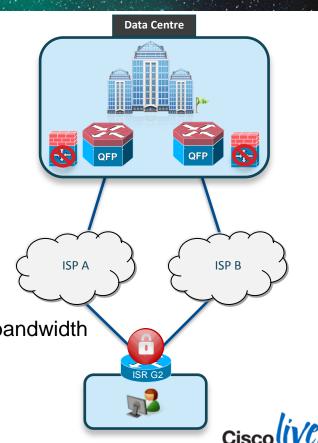
- Centralised provisioning
- AVC Infrastructure
- VRF Awareness
- Blackout ~ 2s
- Brownout ~ 2s
- Scale 2000 sites
- Hub config only

Cisco Public

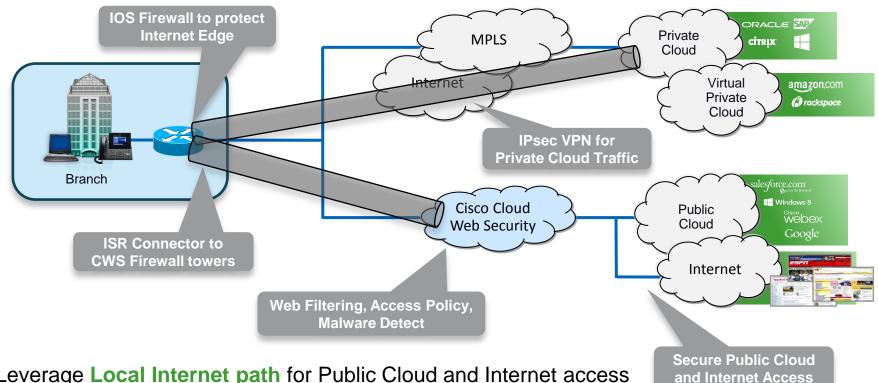
Securing Connectivity

Securing the WAN IPSec VPN and Firewall

Step 1: Secure Transport


- IPSec with DMVPN overlay
 - Secure transport independent overlay
 - Add Strong Cryptography: IKEv2 + AES-GCM 256

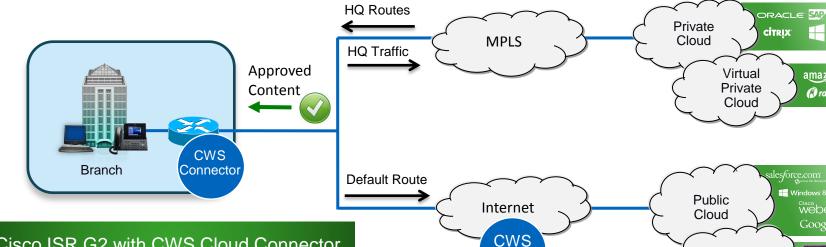
Step 2: Threat Defence


- IOS Zone-based Firewall
- Minimise exposure
 - DHCP addressing for Internet and tunnel interfaces
 - Don't put tunnel addresses into DNS

Step 3: Choose your performance level

- Size router based on Encryption with Services and WAN bandwidth
 - Head-end: ASR1000 or ISR4451X
 - Branch: ISR-G2

Secure Access for Public Cloud and Internet



Leverage Local Internet path for Public Cloud and Internet access

Improve application performance (right flows to right places)

Direct Internet Access

Cisco ISR CWS Connector

Tower

Blocked Files Blocked URLs

Blocked Content

Cisco ISR G2 with CWS Cloud Connector

Functions:

- Authenticate router and client to CWS cloud
- Intercept HTTP/HTTPS traffic based on ACL filters
- Add user credentials header for identifying policy to be applied (encrypted)
- · Traffic Relay: replace client Source IP address with egress port IP or Loopback address
- · Redirect to CWS for scanning

CİTRIX.

lesforce.com

Internet

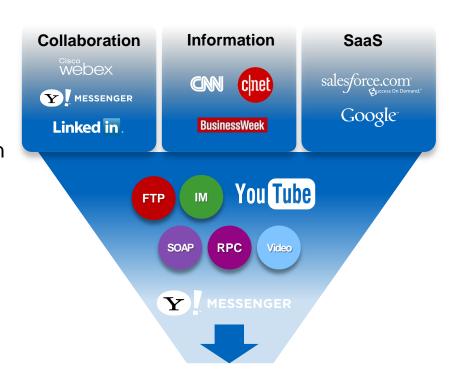
Windows 8

webex

Google

amazon.com

(3) rackspace.



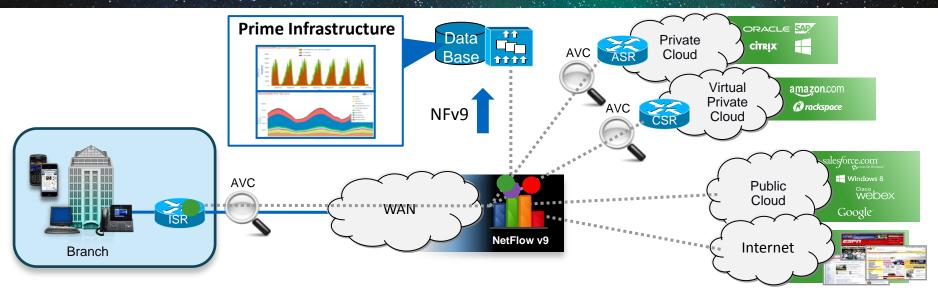
Application Optimisation

Today's Network Is an IT Blind Spot

- Static port classification is no longer enough.
- More and more apps are opaque
- Increasing use of encryption and obfuscation
- Application consists of multiple sessions (video, voice, data)
- What if user experience is not meeting business needs?

HTTP is the new TCP

Next Generation NBAR (NBAR2)



- DPI engine provides Advanced Application Classification and Field Extraction Capabilities from SCE
- Protocol Pack allows adding more applications without upgrading or reloading IOS
- NBAR2 Protocol Library:
 - http://www.cisco.com/en/US/docs/ios-xml/ios/qos_nbar/prot_lib/config_library/nbar-prot-pack-library.html
- NBAR2 Protocol List:
 - http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6558/ps6616/product_bulletin_c25-627831.html

Application Performance Monitoring

Track and Report Application Flows and Performance

Application Recognition

Router identifies applications using L3 to L7 Information

Data Collection and Exporting

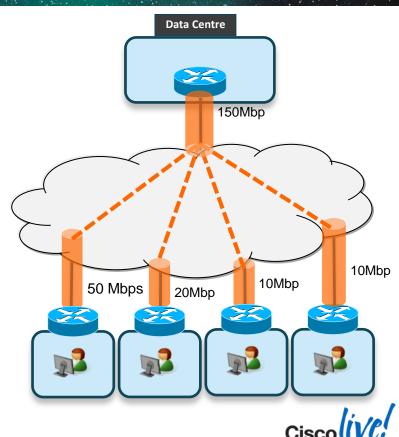
Collect application performance metrics & export to mgmt tool

Management Tool

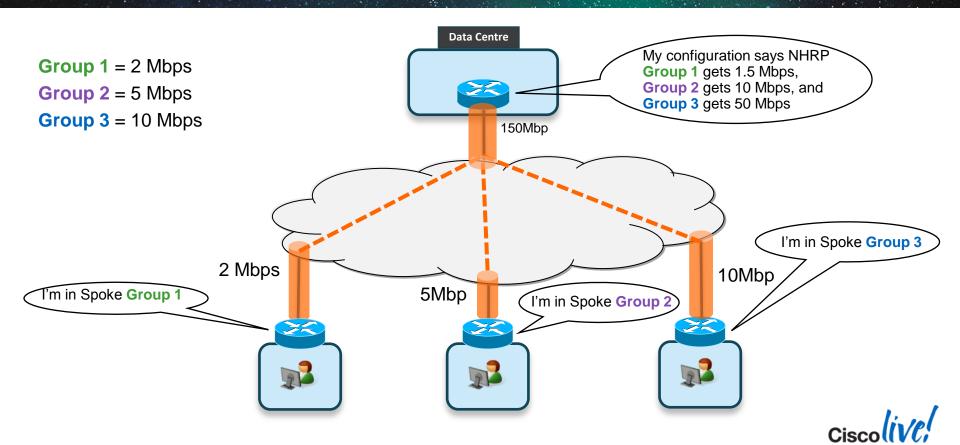
Advanced reporting tool aggregates and reports application performance

4. Control

Control app network usage to improve app performance


Per Site Traffic Shaping to Avoid Overruns DMVPN Per-Tunnel QoS

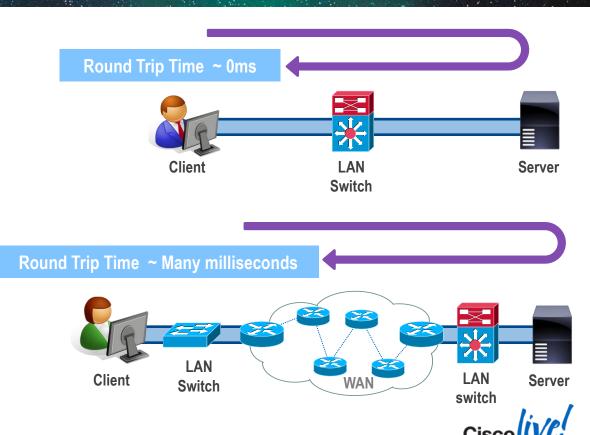
User NHRP group to dynamically provision HQoS policy on a DMVPN hub per-spoke basis


Spoke: Configure NHRP group name

Hub: NHRP group name mapped to QoS template policy

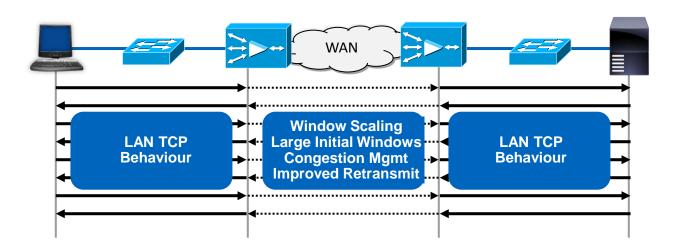
- GRE, IPsec & L2 header are included in calculations for shaping and bandwidth.
- Queuing and shaping is performed at the outbound physical interface

Per Site Traffic Shaping to Avoid Overruns



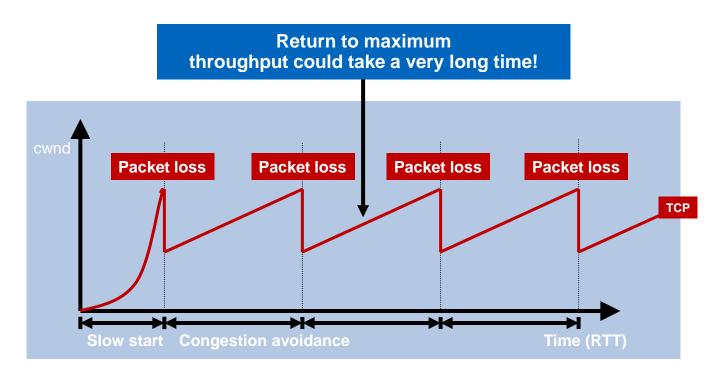
WAAS Overview

Application Delivery Challenges

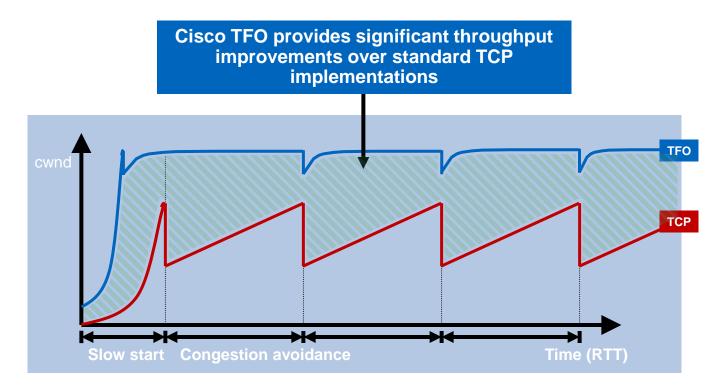

- LAN Connectivity
 - High bandwidth
 - No latency
 - Reliable

- WAN Connectivity
 - Latency
 - Low bandwidth
 - Congestion
 - Packet Loss

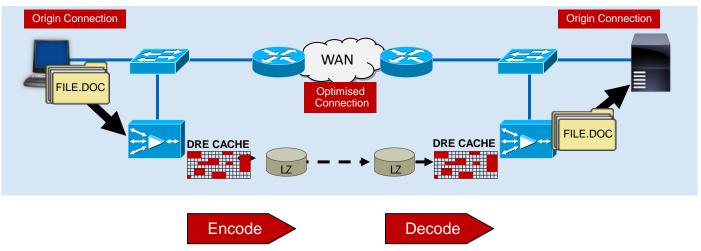
WAAS TCP Performance Improvement


- Transport Flow Optimisation (TFO) overcomes TCP and WAN bottlenecks
- Shields nodes connections from WAN conditions

Comparing TCP and Transport


Flow Optimisation

Comparing TCP and Transport


Flow Optimisation

WAAS Overview DRE and LZ Manage Bandwidth Utilisation

- Data Redundancy Elimination (DRE) provides advanced compression to eliminate redundancy from network flows regardless of application
- LZ compression provides generic compression for all traffic

Important Notes

- NBAR2 today does not support asymmetric routing which is more likely with PfR (work in progress)
- AVC with WAAS requires NBAR2 applied on LAN, before optimisation
- PfRv2 does not support NBAR2, apply NBAR2 to LAN interface to classify applications with appropriate DSCP.
- PfRv2 requires WCCP GRE interfaces to be configured as PfR internal interfaces
- PfRv2 does not support WAAS Express—use WAAS
- NBAR2 + Performance Monitoring can be CPU/Memory resource intensive
- Size routers based on throughput with desired services enabled

Management and Simplification

Cisco Prime Lifecycle Services

Improve Network Control and Operational Productivity

Network Configuration

Plug-n-Play deployment automation

Discovery, Inventory, SWIM, Templates, Archive, etc Converged wired and wireless workflows CWS, VPN, Firewall, ACL, routing, VLAN

Network Health

Sites, Users and Role based access control
Static and Dynamic Grouping, Virtual Domains
RF Design, Device Health Dashboards, Fault and Reports
Device 360, Interface 360

Network Compliance and Support

Industry and Regulatory Compliance
Smart Interactions
Northbound REST APIs
Prime Infrastructure Toolbar and Mobile Application

Prime Infrastructure Plug-n-Play Options

No CLI Skills Required

PnP₁

Cisco Integrated Customisation Services (CICS)

- ISR router is delivered with CICS factory installed bootstrap config
- Installer connects LAN/WAN cables at the site

PnP 2

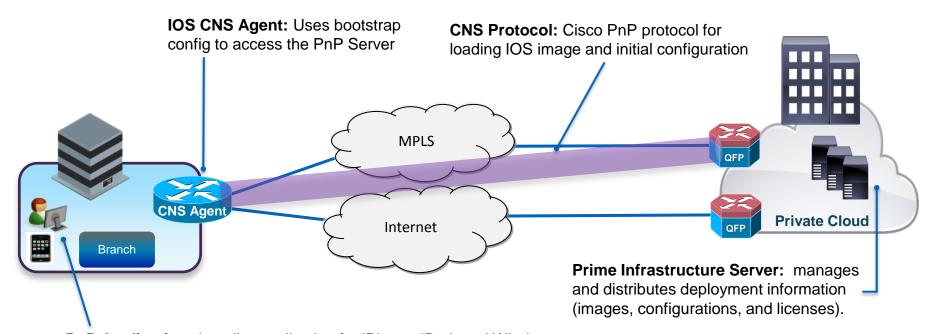
USB stick to bootstrap the ISR

- Installer connects LAN/WAN cables
- ISR loads bootstrap config from USB memory stick

PnP 3

Prime Plug-n-Play Application

- Installer connects LAN/WAN cables + a USB console cable to a Laptop/iPhone/iPad
- PnP Application bootstraps the router


PnP 4

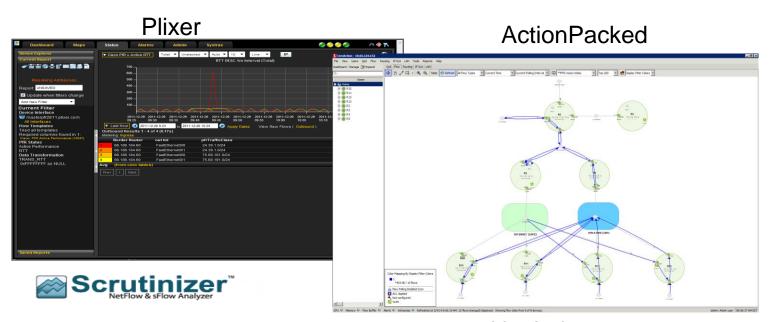
Cisco Configuration Professional Express (ISR Device GUI)

- Installer connects LAN/WAN cables + a PC to a LAN port
- CCP Express Application to bootstrap the router

Plug-n-Play Application Solution Components

PnP Application: Installer application for iPhone, iPad, and Windows PC used for authenticating and booting the IOS device.

Glue Networks NGWAN/IWAN Orchestration



- Cloud-based SaaS subscription model
- Eliminates manual building of WANs
- Automated WAN orchestration and management
- Quick configuration updates and IOS upgrades
- Rapidly delivers nextgen and IWAN features
- Forward compatible with SDN and OnePK for app aware WANs
- Broadband and MPLS support for centralised hybrid WAN management for IWAN

NMS Reporting Partners

LiveAction

- NetFlow Partners Plixer, ActionPacked
- Cisco Prime Infrastructure 2.x Future

Management Tool Matrix

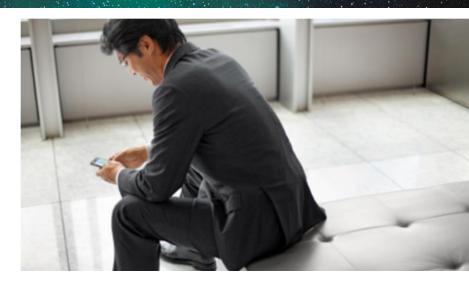
Simplify Deployment	Prime Infrastructure	CISCO		glue TWORKS
Transport Independent Design	Prime Infrastructure	.1 1.1 1. CISCO		glue TWORKS
Intelligent Path Control			ActionPacked [™]	gue ^{tw}
Application Optimisation	WAAS Central Manager	.1 1.1 1. CISCO.	ActionPacked™ (AVC	(2)
Secure Connectivity	Prime Infrastructure	CISCO _N		glue TWORKS
Network Health and Status	Prime Infrastructure	.1 1.1 1. CISCO	ActionPacked [™] Networks	

Summary

- Price Performance and Availability of Internet transport has significantly improved
- Public Cloud & SAAS applications make internet transport of critical applications a real consideration
- SLAs for Business Critical Applications
- Centralised Security Policy for Internet Access
- Under Your Control
- Simplify Deployment Through Plug-and-Play Tools

Ciscolive!

Q & A


Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations.

www.CiscoLiveAPAC.com

#