TOMORROW starts here.

11 11 11 CISCO

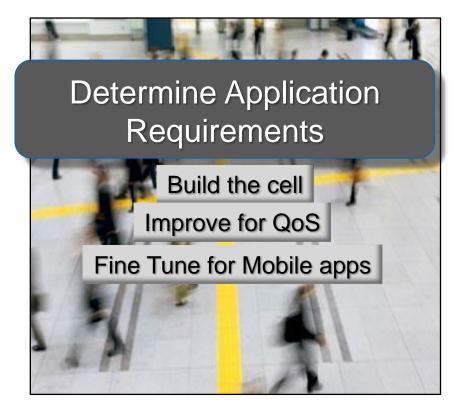
Design and Deployment of Wireless LANs for Mobile Applications

BRKEWN-2000

Henry Chou Consulting Systems Engineer

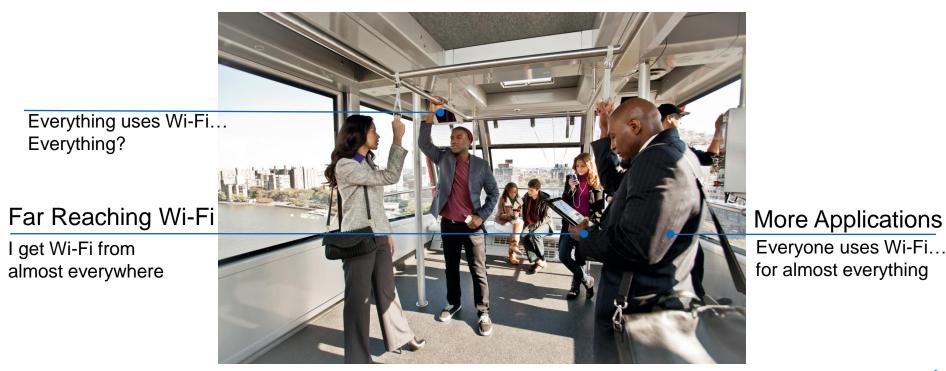
About Henry Chou ...

- Henry is my legal name, but not my first name
- Consulting Systems Engineer, Northern California, Enterprise West (US)
- CCIE #10315
- Co-authored; "CCNA Cisco Certified Network Associate Wireless Study Guide (Exam 640-721)",
- Work and family



Agenda

- Determine Applications Requirements
 - wireless device specs and mobile application needs
- Build the Cell
 - Efficient and fast for mobile applications
- Improve for QoS
 - Prioritise traffic that cannot wait
- Fine tune for mobile applications
 - Help applications that need priority, but do not say so
 - Roaming and more roaming
- What will NOT be covered
 - Collaboration Manager configurations, Voice protocols comparison, Voice Gateways...



Welcome to Your New World

- Application demands are increasing in Wi-Fi medium
 - Use the same wireless device to browse the Internet, stream video, or place a call... so design is about the device, but also the application on the device.
 - Real time applications (voice, video) are intolerant to losses and delays, and sometimes require high throughput
 - Users have high expectations of wireless, if it works at my house, it should work everywhere
- Wireless is still a shared Half Duplex medium and requires efficient spectrum use.
 - Design your network for the most demanding applications
 - Understand 802.11 protocol
 - Understand physical coverage
 - Understand nature of mobile applications

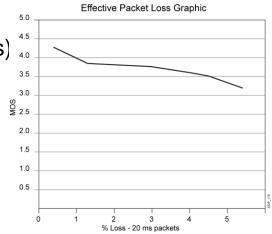
How Much Bandwidth Is Required?

Often Less than You May Think

- Most likely you support more than one application
- Design for the highest bandwidth demand
 - What is the minimum acceptable throughput for the application
 - Most users use only ONE high performance demanding application at a time
 - Multiply this by the number of devices
 - This is the aggregate bandwidth required for the cell

Application – By Use Case	Throughput – Nominal
Web - Casual	500 Kbps
Web - Instructional	1 Mbps
Audio - Casual	100 Kbps
Audio - instructional	1 Mbps
Video - Casual	1 Mbps
Video - Instructional	2-4 Mbps
Printing	1 Mbps
File Sharing - Casual	1 Mbps
File Sharing - Instructional	2-8 Mbps
Online Testing	2-4 Mbps
Device Backups	10-50 Mbps

How Much Bandwidth do They Need?

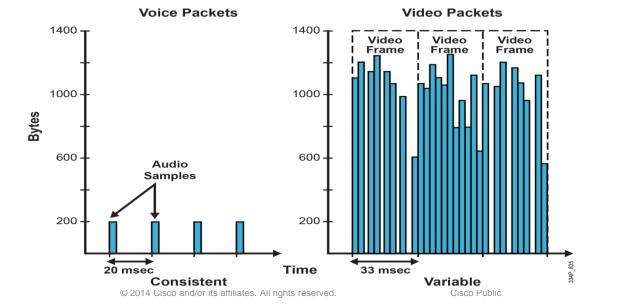

It all depends on how you use them!

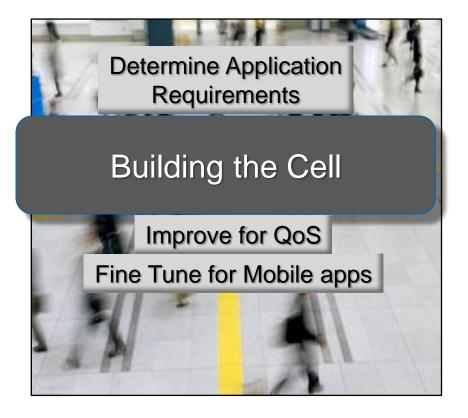
Example, Skype (Up/Down):

Call type	Audio	Video/screen share	Video HD	Group Video (5 people)
Typical Bandwidth	30Kbps/30kbps	130kbps/130kbps	1.2 Mbps/1.2 Mbps	130 kbps/2 Mbps

- Now that you get the picture, a few other examples:
 - Fring (video): 135 kbps,
 - Facetime (video, iPhone 4S): 400 Kbps, (audio) 32 kbps
 - Viber (video) 120 kbps, (audio) 30 kbps
 - Skype/Viber/other chat: around 850 to 1000 bytes (6.8 to 8 kb) per 500 character message
 - Netflix (video), from 600 kbps (low quality) to 10 Mbps (3D HD), average 2.2 Mbps
 - This bandwidth consumption is one way, you need to double for 2-way conversations,

- VoIP carries voice with UDP and RTP, voice control traffic uses RTCP
 - Voice sound is converted to digital packets using codecs
 - Resulting packet size ranges from 8 to 64 bytes per packet (+40 bytes L4/L3 headers, +L2 header)
- Voice has very strict requirements as an "application"
 - Packet loss < 1% (i.e., lost packets / total received packets)
 - Packet Error Rate (PER) <=1%</p>
 - As low jitter as possible <100ms
 - Channel Utilisation levels should be < 50%
 - Retries should be < 20%
 - When these values are exceeded, MOS suffers
 - Goal is to keep MOS high

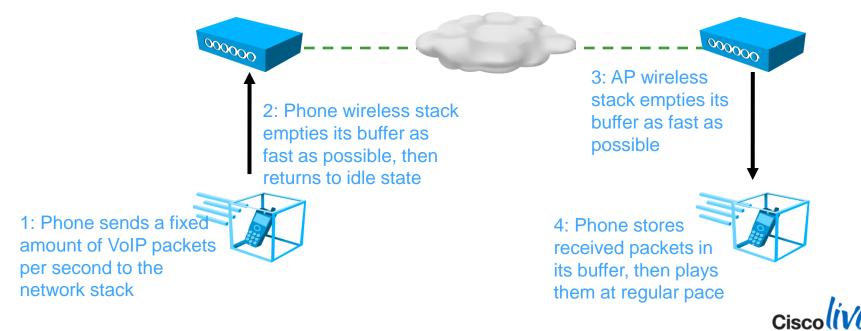

- Voice audio quality perception varies:
 - Depends on the codec selected
 - Depends on the percentage of lost packets, delay and jitter
 - Delay is the end-to-end travel time of each packet, target for the local 802.11 cell is less than 30 ms, and 150 ms end to end
 - Long delays create disturbing silences and conversation overlaps
 - Excessively delayed packets may be dropped at the receiving end
 - Jitter is the variation of delay between packets
 - High jitter generates audio quality issues (clicks, metallic audio or silences)

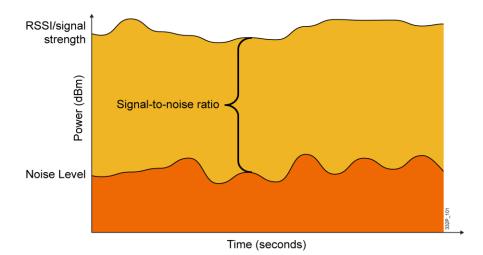

Video uses video and audio codecs

- Some codecs are built for real time exchange, some for streaming
- Video algorithms refresh entire images when large changes occur
- The changes generate traffic bursts

Cisco

Design Steps

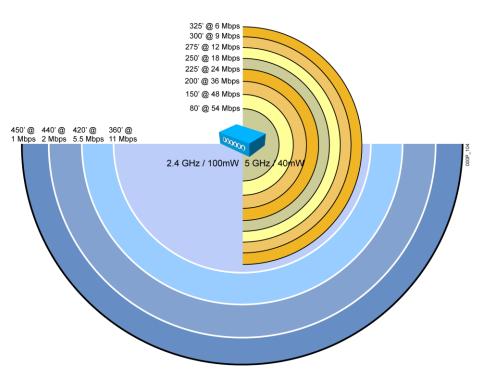



VoIP (and Video!) over Wireless Data Flow


 VoIP packet rate (e.g. 50 packets/second) is not wireless transmission rate (0.03 milliseconds per packet at 54 Mbps)

Cell Size – Depends on Protocol and Rates

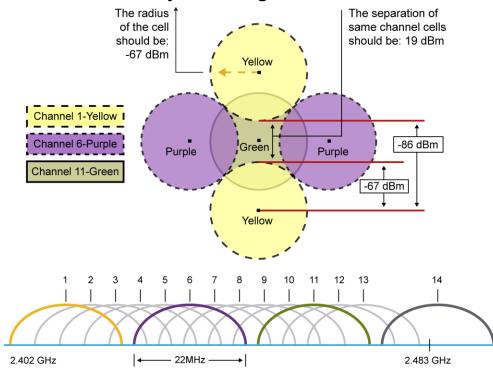
 Higher power does not always mean higher SNR...

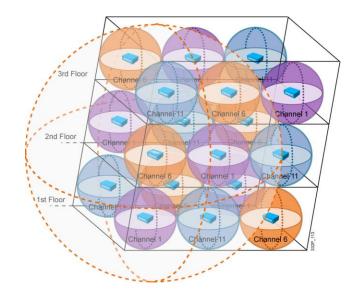

Assuming 10% PER

BRKEWN-2000

Cell Size – Depends on Protocol and Rates

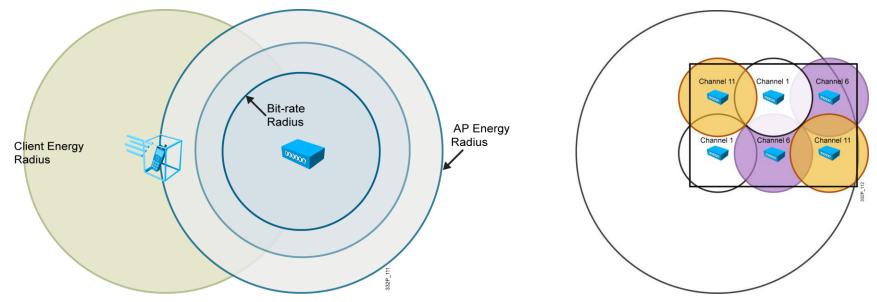
- Data rates decrease with the increase of distance from radio
- Individual throughput (performance) varies with number of users
- Performance degrades with radio interference from other sources
- Critical design goal is to achieve high data rate at cell boundary
 - High signal AND low noise




Cisco Public

2.4-GHz Network Design

Conclusion: try to design small cells, with clever overlap...



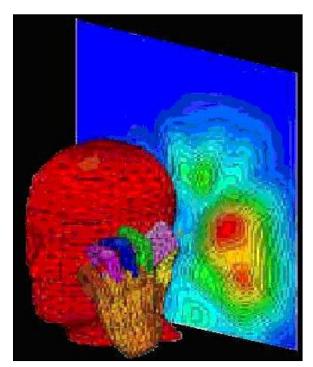
BRKEWN-2000

2.4-GHz Network Design

 The cell useful size is different from the AP footprint... And clients do not make it easier...

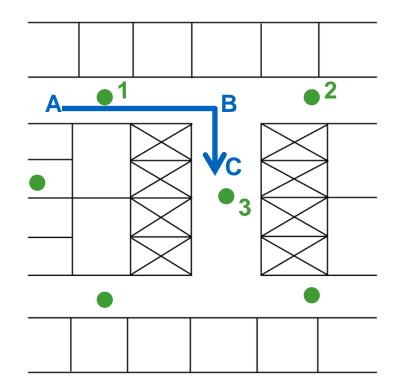
Some Performance Examples

	iPad	iPhone-4	Moto-Xoom	Galaxy S2	Galaxy Tab
Measured - best	-33 dBm	-39 dBm	-34 dBm	-31 dBm	-33 dBm
Pathloss	46 dB	46 dB	46 dB	46 dB	46 dB
RSSI	13 dBm	7 dBm	12 dBm	15 dBm	13 dBm

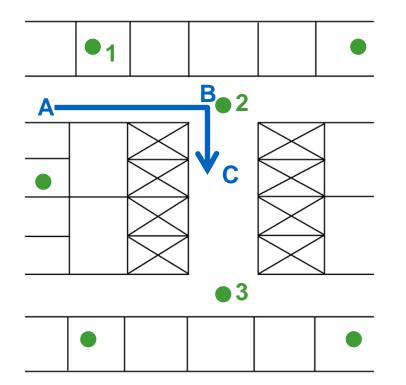


Channel Coverage Sizing Recommendations

- Coverage must be designed for client devices
- Not all clients are created equal !!!
 - 1. Live call test with the actual client to determine its coverage
- Removing legacy DSSS data rates and slower OFDM data rates from WLC configuration equals:
 - 1. Less Co-Channel Interference
 - 2. Better throughput in the cell
 - 3. More usage of ClientLink and MRC
 - 4. Smaller coverage cells
- Smaller cell sizes equals:
 - 1. More cells in a given coverage area
 - 2. More cells equals more call with better voice and video quality



Object in Signal Path	Signal Attenuation Through Object
Plasterboard wall	3 dB
Glass wall with metal frame	6 dB
Cinderblock wall	4 dB
Office window	3 dB
Metal door	6 dB
Metal door in brick wall	12 dB
Phone and head position	3 - 6 dB

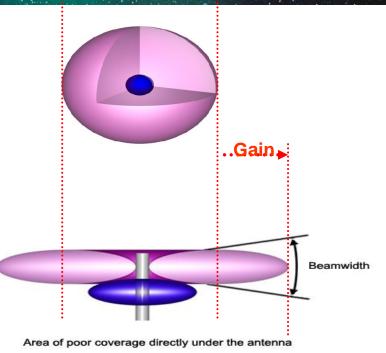


VoWiFi Rate Shifting and AP Placement

- At "A" the phone is connected to AP 1
- At "B" the phone has AP 2 in the neighbour list, AP 3 has not yet been scanned due to the RF shadow caused by the elevator bank
- At "C" the phone needs to roam, but AP 2 is the only AP in the neighbour list
- The phone then needs to rescan and connect to AP 3
 - 200 B frame @ 54 Mbps is sent in 3.7 µs
 - 200 B frame @ 24 Mbps is sent in 8.3 µs
- Rate shifting from 54 Mbps to 24 Mbps © 2014 Cisco and/or its affiliates. All rights reserved. Cisco

VoWiFi Rate Shifting and AP Placement

- At point A the phone is connected to AP 1
- At point B the phone has AP 2 in the neighbour list as it was able to scan it while moving down the hall
- At point C the phone needs to roam and successfully selects AP 2
- The phone has sufficient time to scan for AP 3 ahead of time



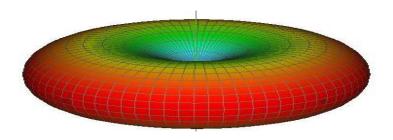
Antenna Theory and Antenna Gain

- A theoretical isotropic antenna has a perfect 360° vertical and horizontal beamwidth (it puts the i in dBi)
- This is a reference for all antennas
- Gain is equal in all directions
- The reception of good signals and interference is the same in all directions

High Gain Omni-Directional Antenna:

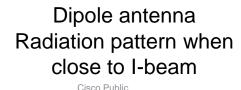
- More coverage area on the horizontal elevation
- Energy level directly above or below the antenna will become lower

There Is No Increase in Transmitted Energy with the Higher Gain



© 2014 Cisco and/or its affiliates. All rights reserved.

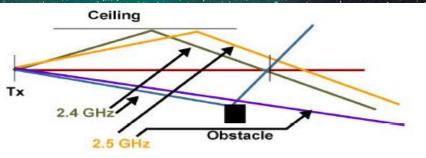
Cisco Public


Radiation Pattern and Environment

- Radiation patterns provided by vendors are lab values
 - Do not take into account environmental impact
- Example: dipole antenna in lab environment (left), and positioned below a metallic plate (right)
- Position the antenna carefully to obtain a radiation pattern similar to the example provided by the vendor

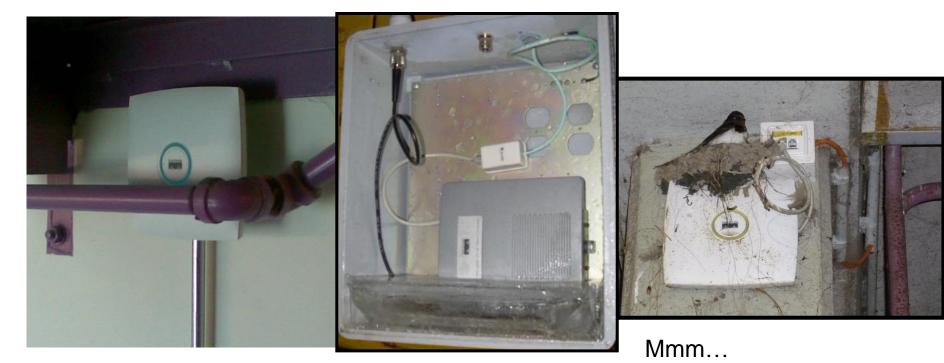
Dipole antenna

Default radiation pattern



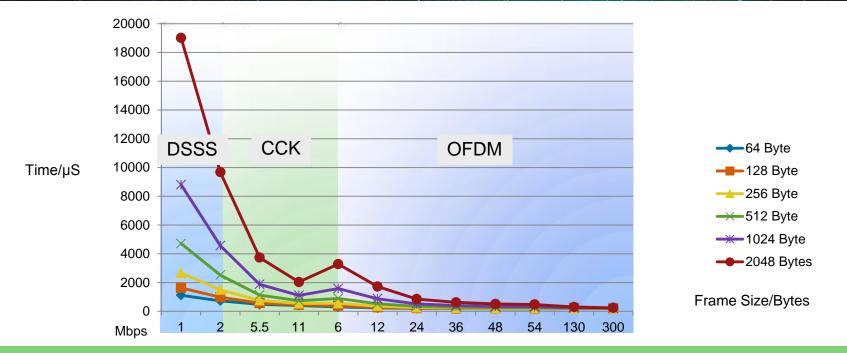
BRKEWN-2000

RF Design – Don't Do Anything Stupid


- Highly reflective environments
- Multipath distortion/fade is a consideration
- Legacy SISO technologies (802.11a/b/g) are
- 802.11n improvements with MIMO
- Devices are susceptible
- Things that reflect RF
 - Irregular metal surfaces
 - Large glass enclosures/walls
 - Lots of polished stone

RF Design – More Bad Examples

Mount horizontally... and not behind a metallic pipe


BRKEWN-2000

A little ICE to keep the packets cool

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public

Wireless is Shared Medium

Spectrum is a Shared Finite Resource

Every SSID Counts!

- Each SSID requires a separate Beacon
- Each SSID will advertise at the minimum mandatory data rate
- Disabled not available to a client
- Supported available to an associated client
- Mandatory Client must support in order to associate
- Lowest mandatory rate is beacon rate
- Highest mandatory rate is default Mcast rate

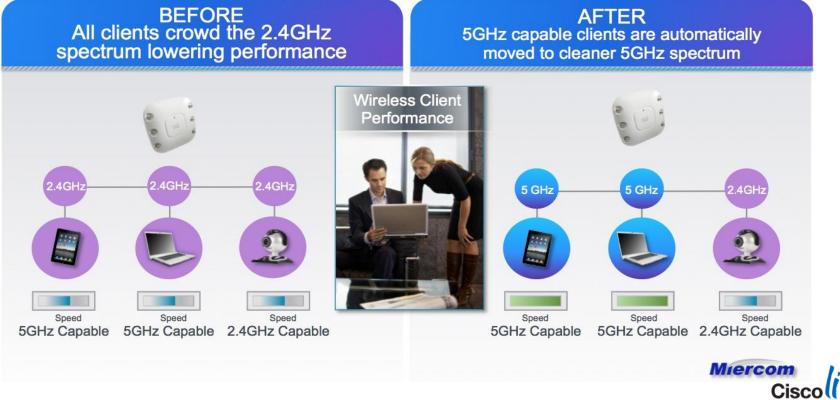
Data Rates**

1 Mbps	Disabled	\$
2 Mbps	Disabled	\$
5.5 Mbps	Disabled	\$
6 Mbps	Disabled	\$
9 Mbps	Disabled	\$
11 Mbps	Disabled	\$
12 Mbps	Supported	\$
 18 Mbps	Supported	\$
24 Mbps	Mandatory	\$
36 Mbps	Supported	\$
48 Mbps	Supported	\$
54 Mbps	Mandatory	\$

Channel Design – Use the Tools

- Disable low, unused rates (802.11b)
- Let RRM control channel and power levels
- If you can, use 3600/3700 APs, with ClientLink and BandSelect:
 - BandSelect to push 5 GHz-able to the 5 GHz band
 - Take advantage of 4-21 non-overlapping channels
 - ClientLink to provide better throughput for 802.11a/g/n/ac clients

Data Rates**	
1 Mbps	Disabled 💌
2 Mbps	Disabled 💌
5.5 Mbps	Disabled 💌
6 Mbps	Disabled 💌
9 Mbps	Disabled 💌
11 Mbps	Disabled 💌
12 Mbps	Mandatory 💌
18 Mbps	Supported 💌
24 Mbps	Supported -
36 Mbps	Supported 💌
48 Mbps	Supported -
54 Mbps	Supported -


Channel Utilisation— What Made the Difference?

5% After

Cisco BandSelect Technology

Automatic Band Steering and Selection For 5GHz Capable Devices

Configuring Band Select

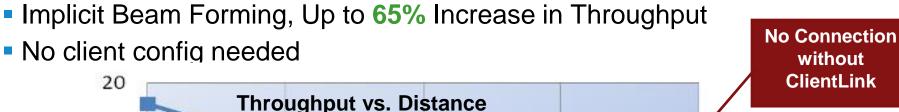
Enabled on a per WLAN basis (disabled by default)

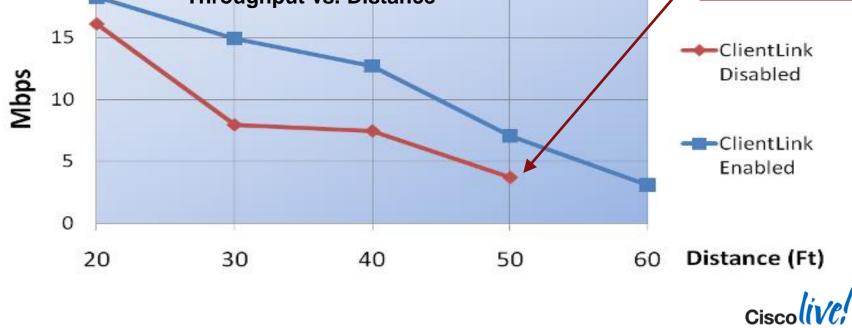
WLANs > Edit 'Open31'

ς.

General Security QoS Po	olicy-Mapping Advanced	
P2P Blocking Action	Disabled -	Management Frame Protection (MFP)
Client Exclusion 3	Enabled 60 Timeout Value (secs)	MFP Client Protection 4 Optional 🔻
Maximum Allowed Clients 🛎	0	DTIM Period (in beacon intervals)
Static IP Tunneling ¹¹ Wi-Fi Direct Clients Policy Maximum Allowed Clients Per AP Radio Clear HotSpot Configuration Client user idle timeout (15-100000) Client user idle threshold (0-10000000) Off Channel Scanning Defer	Enabled 300 Seconds	802.11a/n (1 - 255) 1 802.11b/g/n (1 - 255) 1 NAC NAC State None ▼ Load Balancing and Band Select Client Load Balancing
Scan Defer Priority 0 1 2	2 3 4 5 6 7	Client Band Select
Scan Defer Time(msecs) 100		Passive Client
BRKEWN-2000	© 2014 Cisco and/or its affiliates. All rights reserved.	Cisco Public

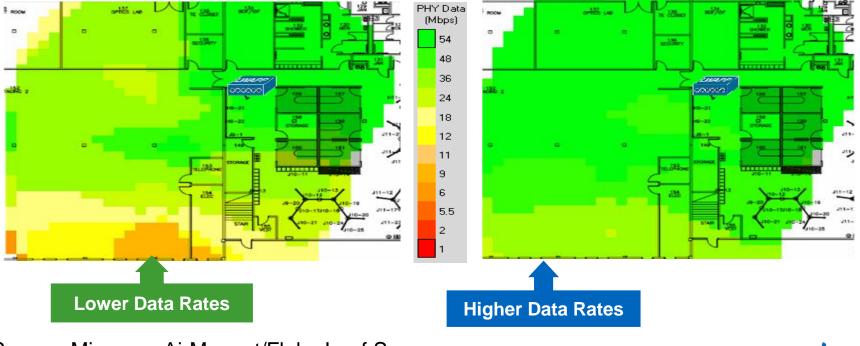
BandSelect – Test Before Full Deployment


Caveat – Possible Increased Roaming Delay 2.4G band 5G band No Delay Some Delay (1.5s) Cisco **Possible Delay** BRKEWN-2000 © 2014 Cisco and/or its affiliates. All rights reserved. Cisco Public


Cisco ClientLink Technology

Advanced Beam Forming Technology

Cisco ClientLink 2.0 and 3.0


BRKFWN-2000

Client Link: Reduced Coverage Holes

Higher PHY Data Rates

ClientLink Disabled

ClientLink Enabled

Source: Miercom; AirMagnet/Fluke Iperf Survey

ClientLink: Battery Life Improvement

- 30ft Distance from Access Point to Motorola Xoom
- Download a file via FTP till complete and observe battery drop.

Tips on RF Design

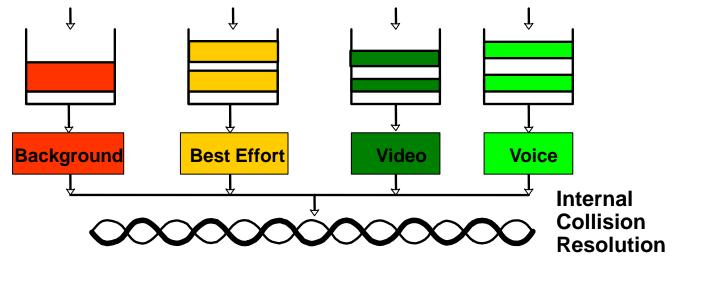
- Every site is unique, do not assume two installations would be the same
- Think of AP coverage area as a "reading light" you want to illuminate where the devices will be.
- Use appropriated equipment for the need: 1140/3500i/3600i/3700i for carpeted areas, 1260/3500e/3600e/3700e for specific application, antenna orientations
- Avoid using internal antennas AP in vertical placements. RF planning is more difficult
- Validate that coverage is as expected after installation

Design Steps

Improve for QoS

802.11e and Wi-Fi Multimedia (WMM)

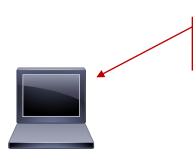
- 802.11e was ratified in 2005 to create QoS for 802.11.
- 802.11e introduces "EDCA" (Enhanced Distributed Channel Access, a framework to prioritise frames while still keeping the distributed behaviour of 802.11)
- APs are HC (Hybrid Coordinators), and cells are QBSS (QoS Basic Service Sets)
- Creates 8 UP (User Priorities, AKA Traffic Categories, TC) to set frame priority levels
- Allows Admission Control Mandatory (ACM) flag allows uplink traffic to be controlled
- Contention-free packet bursting within the TXOP Limit (Transmission Control: Transmission Opportunity)
- WMM is a Wi-Fi Alliance certification on partial implementation of 802.11e
- Ensures compatibility between vendors implementing the same 802.11e features
- Eight traffic categories (TCs) become four queues (Access Categories, AC)


IEEE 802.11e WMM Access Categories

Access Category	Description	802.1d Tags
WMM Voice Priority	Highest Priority (Multiple Calls, Low Latency and Toll Voice Quality)	7, 6
WMM Video Priority	Traffic Other Than Data	5, 4
WMM Best Effort Priority	Legacy Devices or Applications That Lack QoS Capabilities	0, 3
WMM Background Priority	Low Priority Traffic (File Transfers, Printing)	2, 1

802.11e / WMM Media Access Classifications

- Separates traffic types in to 4 QoS access categories (AC)
- Background, Best Effort, Video, Voice
- These 4 ACs also have unique delay and random back off characteristics for accessing the RF channel (EDCA)



802.11e / WMM Media Priority

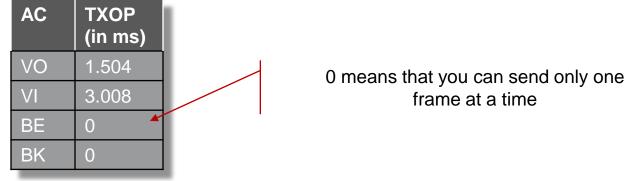
- To send a frame, wait a silence (IFS, Interframe Space), then count down from a random number (CW, Contention window) to zero
- WMM trick to prioritise traffic: higher priority queues wait a shorter silence (called the AIFSN, Arbitrated Interframe Space Number), and pick up a random value in a smaller number range

I am a WMM Voice queue, I wait 34 µs, then count down from a number between 3 and 7

I am a WMM Background queue, I wait 79 μs, then count down from a number between 15 and 1023

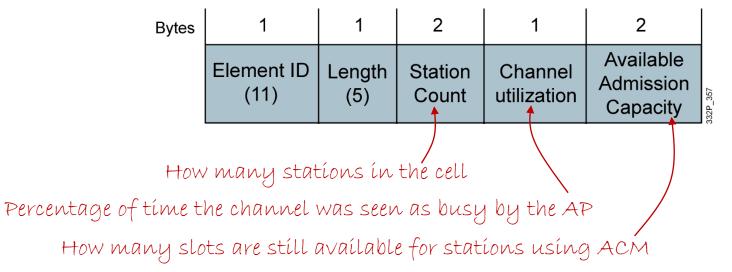
AIFS, CW... Okay, it's complicated

- Arbitration inter-frame spacing (AIFS) prioritises one AC over the other by shortening or expanding the time a wireless node wait before transmit.
- AIFSN is different for Voice (2), Video (2), Best Effort (3) and Background (7)
- Short slot time = 9 µs (for 802.11a/g/n, 802.11b has a longer one)
- SIFS = 10 μs for 2.4 GHz, 16 μs for 5 GHz
- The time you wait before counting down is:
 AIFS = SIFS + AIFSN x Slot Time

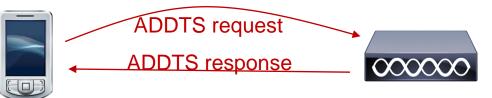

Example: Voice in 802.11an: $16 + (2 \times 9) = 34 \mu s$ Bckd with 802.11gn: $10 + (7x9) = 73 \mu s$

Then, pick a number between CwMin and CwMax (usually start with CwMin)

AC	AIFSN	AIFS (2.4 GHz)	AIFS (5 GHz)	CwMin	CwMax
VO	2	28	34	3	7
VI	2	28	34	7	15
BE	3	37	43	15	1023
BK	7	73	79	15	1023


- IFS, ACK and other overheads waste time
- 802.11e/WMM allows you to send more than one frame, when you can access the medium
- The AP sets a TXOP value to tell you for how long you can send in a row
 - This is set in ms, the time you take to send, regardless of the data rate you use and the size of your frame

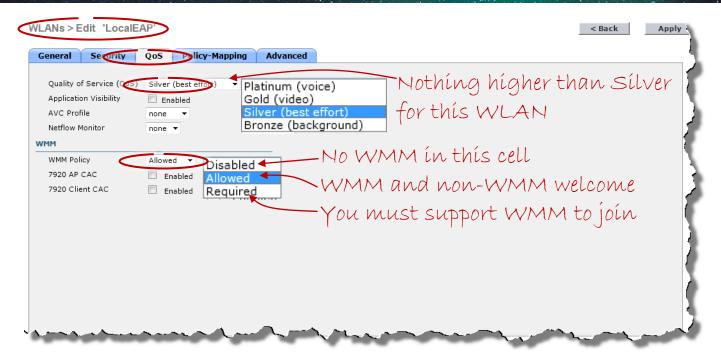
- Sent by WMM APs in beacons and probe responses
- Helps clients decide which AP to associate or roam to
- No real interaction between client and AP



Last Brick, TSPEC

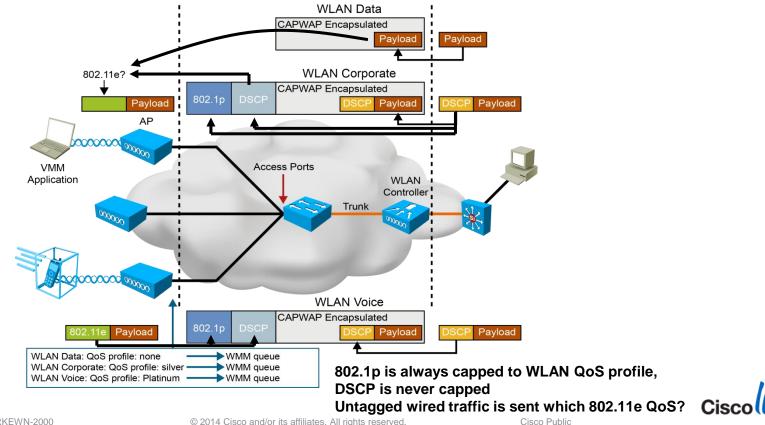
- 802.11e/WMM allows Access Control Mandatory for some queues
- When ACM is on, clients are supposed to ask for permission before sending new traffic flow

 I need to place a call, this is my traffic specification


(packet síze, rate up and down, etc.

"Denied" (maybe try another queue) Or "Accepted", your traffic is deduced from my available bandwidth

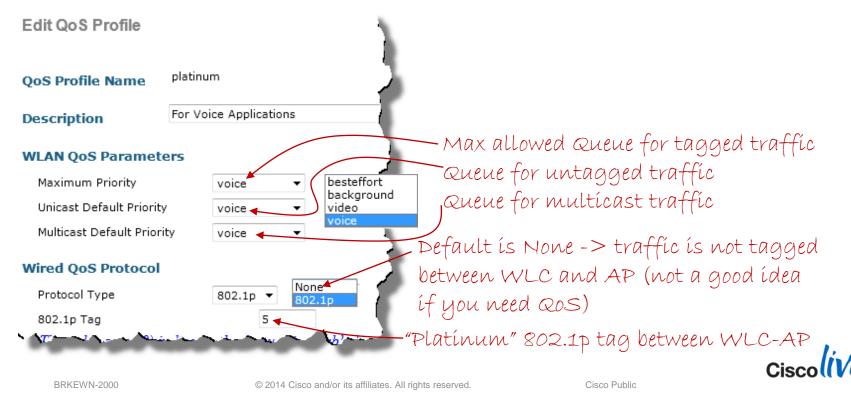
Assigning a QoS Profile to a WLAN


QoS profile is the highest QoS level allowed in and to the cell

If you want 802.11n/802.11ac speeds, allow/require WMM!

BRKEWN-2000

802.11e Traffic Priority


© 2014 Cisco and/or its affiliates. All rights reserved.

AVVID 802.1p UP-Based Traffic Type	AVVID IP DSCP	AVVID 802.1p UP	IEEE 802.11e UP
Reserved (Network Control)	56	7	7
Reserved	48	6	
Voice	46 (EF)	5	6
Video	34 (AF41)	4	5
Voice Control	24 (CS3)	3	4
Gold Background	18 (AF 21)	2	2
Silver Background	10 (AF 11)	1	1
Best Effort	0 (BE)	0	0, 3

Setting QoS for the AP-WLC Part and Defaults

Wireless > QoS > Profiles > Edit

Optimising WMM

Wireless > 802.11a | 802.11bg > EDCA Parameters

11a > ED	CA Parameter	re.				AC	AIFSN	CwMin	CwMax	ТХС
	CAFalameter	5				VO	2	2	4	0
eral						VI	5	3	5	0
CA Profile	>		WMM		-]/	BE	5	6	10	0
able Low Lat	ency MAC 🗜		Voice	tralink Voice Priori Optimized & Video Optimize	1	ΒK	12	8	10	0
	· · · · · ·					_				
AC	AIFSN	CwMin	CwMax	ТХОР		AC	AIFSN	CwMin	CwMax	
AC VO	AIFSN 2	CwMin	CwMax	TXOP		AC VO	AIFSN 2	CwMin 2	CwMax 4	TXO
AC VO VI	2	CwMin 2 3		47						
VO		2	3			VO	2	2	4	

ACM

Wireless > 802.11a | 802.11bg > Media Same options now exist for Video 802.11a(5 GHz) > Media when this is Enabled. VO devices Media Voice Video should use ADDTS/TSPEC Call Admission Control (CAC) For handwidth calculation: Admission Control (ACM) Enabled Only takes cell clients traffic CAC Method 4 Load Based 🔻 Static 🗲 Max RF Bandwidth (5-85)(%) Load Based -Includes all 802.11 activity 75 Reserved Roaming Bandwidth (0-25)(%) on the channel Expedited bandwidth Taken out of Max RF Bandwidth value Allows CCXV5 clients to exceed Max RF Bandwidth for emergency calls

Where are We now?

• We have:

- ✓ QoS Profile tagging all traffic, between WLC-AP and to the cell
- \checkmark QoS profile applied to the WLAN
- ✓ EDCA optimised for voice/video
- ✓ CAC to block excessive flows and guarantee ongoing calls quality
- Let' see if we are ready...

FaceTime Voice Packet: iPad

Packet Transmitter	Source	Destination	BSSID	Protocol
141 📑 F0:CB:A1:5F	:BE:6A 🛛 😼 192.168.0.10	3 192.168.0.2	Cisco:FC:3B:10	UDP
142 🕎 Cisco: FC: 3B	:10 🧕 192.168.0.10	3 192.168.0.2	Cisco:FC:3B:10	UDP
143 🕎 F0:CB:A1:5F	:BE:6A 🛛 😼 192.168.0.10	3 71.74.127.200	Cisco:FC:3B:10	UDP
144 📰 A4:67:06:70	- Set	192.168.0.10	Elsco:FC:3B:10	RTP Dynamic
145 📑 A4:67:06:70	3	3 192.168.0.10	Cisco:FC:3B:10	RTP Dynamic
146 🗊 A4:67:06:70	3	3 192.168.0.10	Cisco:FC:3B:10	RTP Dynamic
147 💵 A4:67:06:70	:BA:D7 🛛 🛃 192.168.0.2	192.168.0.10	Cisco:FC:3B:10	RTP Dynamic
Source :	A4:67:06:7C:BA:D7 [10-15]		
🚽 🌀 Seg Number:	2958 [22-23 Mask Ox	FFF01		
🖙 🜍 Frag Number:	0 [22 Mask 0x0F]			
- T OoS Control Fi	eld: \$0000000000000110	24-251		
· · · · · · · · · · · · · · · · · · ·		. AP PS Buffer State:	0	
		. A-MSDU: Not Present	-	
		. Ack: Normal Acknowl	edre	
		. EOSP: Not End of Tr.		2
<u> </u>			iyyarad Sarvice Farit	a
	k Control (LLC) Header	0 0F. 0 - VOICE		
Dest. SAP:				-
Source SAP:				
	OXAA SNAP [27]			
····· 🎯 Command:	0x03 Unnumbered In	formation [28]		
Vendor ID:	0x000000 [29-31]			
Protocol Type:	0x0800 IP [32-33]			
T I INCLE INCOL	nee reveved bucuyeum			
🐨 Version:	4 [34 Mask OxF0]			
	5 <i>(20 bytes)</i> [34 M	ask OxOF]		
🚊 👕 Differentiated	Services:%11000000 [35]			
····· 🗊	0011 00 Class	Selector 6		
(7)	00 Not-EC	T		
🚽 🜍 Total Length:	173 [36-37]			

Cisco Public

FaceTime Voice Packet: iPad

Packet	Transmitter	Source	Destination	BSSID	Protocol
	#2 A4:67:06:7C:BA:D7	192.168.0.2	192.168.0.10	Cisco:FC:3B:10	RTP Dynamic
	Cisco: FC: 3B:10	192.168.0.2	192.168.0.10	Cisco:FC:3B:10	RTP Dynamic
	BA4:67:06:7C:BA:D7	192.168.0.2	192.168.0.10	BDCisco:FC:3B:10	RTP Dynamic
	Cisco:FC:3B:10	192.168.0.2	192.168.0.10	Cisco:FC:3B:10	RTP Dynamic
	F0:CB:A1:5F:BE:6A	192.168.0.10	71.74.127.200	Cisco:FC:3B:10	UDP
227	■ 14.67.06.7C.B1.D7	a 102 168 N 2	a 102 168 N 1N	Eisco-FC-3B-10	DTD Dymamic
•					
	BSSID:	00:21:1B:FC:3B:10 Cis	<i>co:FC:3B:10</i> [4-9]		
	Source:	A4:67:06:7C:BA:D7 [10-]	L5]		
· IP)	Destination:	F0:CB:A1:5F:BE:6A [16-2	21]		
🌍	Seg Number:	1858 [22-23 Mask OxFFF0)]		
÷	QoS Control Field:	%000000000000101 [24-2	25]		
	9	Al	P PS Buffer State:	0	
	9	0 A-	-MSDU: Not Present		
	9	00 Ad	ck: Normal Acknowl	edge	
	9	EC	OSP: Not End of Tr	iggered Service Period	
	9		P: 5 - Video		
	- Logrour Britt conce				
	Dest. SAP:	OxAA SNAP [26]			
🍘	Source SAP:	OxAA SNAP [27]			
🍘	Command:	0x03 Unnumbered Inform	mation [28]		
	Vendor ID:	0x000000 [29-31]			
IP	Header - Internet Pro	tocol Datagram			
	Version:	4 [34 Mask OxF0]			
a la	Header Length:	5 (20 bytes) [34 Mask	02051		
	Differentiated Service				
		0010 00 Class Sele	ector 4		
	·•				
	• Total Length:	1279 [36-37]			
•	Total Length.	1212 [30-31]			

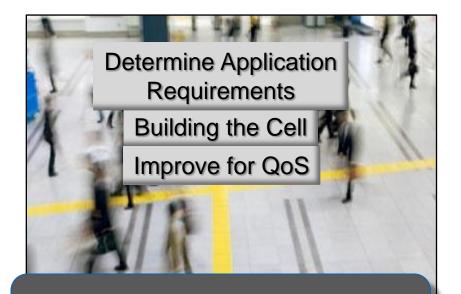
Ciscolive!

Skype Voice Packet – iPad

Packet	Transmitter	Source	Destination	BSSID	Protocol
13	Elsco:FC:3B:10	🛃 192.168.0.2	3 192.168.0.10	Elsco:FC:3B:10	UDP
14	A4:67:06:7C:BA:D7	192.168.0.2	9 192.168.0.10	Elsco:FC:3B:10	UDP
	Cisco:FC:3B:10	🧕 192.168.0.2	3 192.168.0.10	Cisco:FC:3B:10	UDP
16	Eisco FC · 3B · 10	192 168 0 2	🧐 192 168 N 1N	III Cisco FC • 3B • 10	ITTIP
	BSSID:	00:21:1B:FC:3B:10 Cisc			
		A4:67:06:7C:BA:D7 [10-1			
		FO:CB:A1:5F:BE:6A [16-2	-		
	See Numbers	70:CB:AI:SF:BE:OA [10-2	1		
	Frag Number:	0 [22 Mask OxOF]	-		
	-	© [22 Hask 0x07] %000000000000000000000 [24-2	51		
		-	9] PS Buffer State:	2	
		AF		°	
		00 Ac		edre	
				euge iggered Service Period	
	· •			iyyereu Service Feriou	
	*		: V - Dest Ellort		
	2.2 Logical Link Contro Dest. SAP:	OXAA SNAP [26]			
		OXAA SNAP [27] Succe University of Terform			
		0x03 Unnumbered Inform	<i>acion</i> [28]		
1 1 -		0x000000 [29-31]			
	Protocol Type:	L 1			
	Header - Internet Prot				
		4 [34 Mask OxFO]			
		5 (20 bytes) [34 Mask	UXUFJ		
- T 1	Differentiated Service				
		0000 00 Default			
		56 [36-37]			
		36547 [38-39]			
	Fragmentation Flags:				
BRKEWN-2000	. 🕋 © 20	0 Reserved 14 Cisco and/or its affiliates. All righ	ts reserved.	Cisco Public	

Skype Voice Packet – iPad

Packet	Transmitter	Source	Destination	BSSID	Protocol
1983	Cisco:FC:3B:10	Cisco:FC:3B:10	B2 A4:67:06:7C		802.11 CTS
1984	BA4:67:06:7C:BA:D7	192.168.0.2	192.168.0.10	Cisco:FC:3B:10	UDP
1985	Cisco:FC:3B:10	Cisco:FC:3B:10	■ A4:67:06:7C		802.11 BA
1986	Cisco:FC:3B:10	🧔 192.168.0.2	🥥 192.168.0.10	Cisco:FC:3B:10	UDP
•					
	Source:	A4:67:06:7C:BA:D7 [10-1	.5]		
····• 💵 🛛	Destination:	F0:CB:A1:5F:BE:6A [16-2	:1]		
😚 :	Seg Number:	3721 [22-23 Mask OxFFF0]		
	frag Number:	O [22 Mask OxOF]			
	QoS Control Field:	%000000000000000 [24-2	:5]		
	9	AI	P PS Buffer State:	0	
	9	0 A-	MSDU: Not Present		
	9	00 Ac	k: Normal Acknowle	edge	
	9	EG	SP: Not End of Tri	iggered Service Period	
	@		2: 0 - Best Effort		
802	.2 Logical Link Contro	ol (LLC) Header			
···· 😚 I	Dest. SAP:	OxAA SNAP [26]			
😚 🚦	Source SAP:	OxAA SNAP [27]			
🎯 🛛	Command:	0x03 Unnumbered Inform	mation [28]		
	Vendor ID:	0x000000 [29-31]			
🕥 1	Protocol Type:	0x0800 IP [32-33]			
	Header - Internet Prot	tocol Datagram			
···· 🐨 '	Version:	4 [34 Mask OxF0]			
🐨 I	Header Length:	5 (20 bytes) [34 Mask	0x0F]		
	Differentiated Service	s:%00000000 [35]			
	9	0000 00 Default			
	9	00 Not-ECT			
···· 🐨 '	Total Length:	1375 [36-37]			
😚 :	Identifier:	31655 [38-39]			
- T	Fragmentation Flags:	%000 [40 Mask OxE0]			-

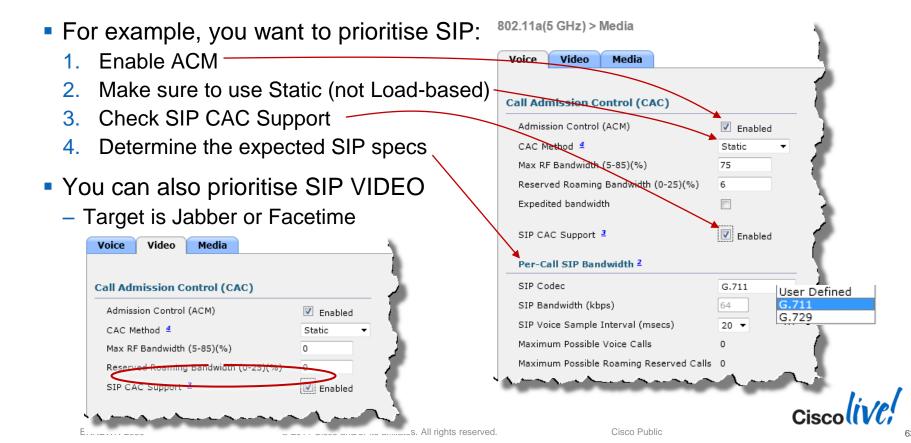

Cisco Public

What are we missing?

- If you are an OS vendor, which application would you allow to get higher priority than the others? What are the risks?
- From the wireless infrastructure side, the conclusion is that we should enable QoS... but can't trust that all applications on all devices will use proper marking.
- So... what else can we do to improve traffic quality for our mobile applications?

Design Steps

Fine Tune for Mobile apps


Let's Think the Problem in Terms of Directions

- In a standard cell, 70% of traffic is downstream (from AP to client)
- 30% is upstream
- We can definitely control downstream, especially as 802.11n/ac stations are necessarily WMM
- Can we control the upstream? Not directly, but we may have an indirect way of controlling it...

If your Traffic is Targeted

If your Traffic is Targeted

For example, you want to prioritise SIP:
5. Enable SIP support on the WLAN:

General Security Q	oS	Polic	y-Ma	appin	g	Advanced			
Scan Defer Priority	0 1	L 2	3 4	1 5	6	7	Client Band Select		
				v	V		Passive Client		
Scan Defer Time(msecs)	100	_					Passive Client		
FlexConnect	100						Voice		
FlexConnect Local Switching ²		Enabled					Media Session Snooping Re-anchor Roamed voice Clients	V	Enabled
FlexConnect Local Auth 12		Enabled					KTS based CAC Policy		Enabled
Learn Client IP Address 5	\checkmark	Enabled					Radius Client Profiling		
Vlan based Central		Enabled					DHCP Profiling		
Switching 13 Central DHCP Processing							HTTP Profiling		

WLANs > Edit 'Open31'

SIP Audio, SIP Video (Jabber, Facetime)

How do they do it?:

 The AP uses the port (SIP audio or video), and also use the User-agent field (video) to further identify the SIP type:

If you have Several Traffic Types to Target: Use Application Visibility and Control

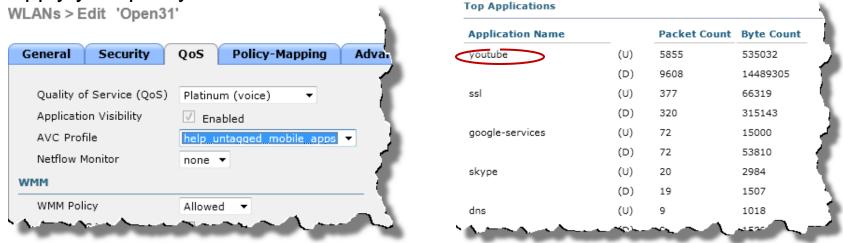
- Internal application recognition engine based on NBAR2
- More than 1000 applications recognised, including Netflix, Skype, Lync audio, Lync video viber, ventrilo, etc.
- Protocol Pack 6.3 breaks out Jabber audio, video, control, im, ... etc.

cisco	MONITOR	<u>W</u> LANs	<u>C</u> ONTROLLER	W <u>I</u> RELESS	<u>S</u> ECURITY	M <u>A</u> NAGEMENT	C <u>O</u> MMAN	ids he <u>l</u> p	FEG
Wireless	AVC Appl	lications							4
Access Points All APs Radios 802.11a/n/ac	Current Filt	ter Nor	ne		[Change Filte	<u>r] [Clear Filter]</u>			
802.11b/g/n Dual-Band Radios Global Configuration	Applicatio	n Name		Application G	Group	Appl ID	ication Eng ID	gine Selecto ID	or
Advanced	<u>shockwave</u>			browsing		707	3	1626	
Mesh	<u>shrinkwrap</u>			net-admin		274	3	358	
RF Profiles	<u>siam</u>			other		412	3	498	
FlexConnect	sift-uft			file-sharing		517	3	608	
Groups FlexConnect ACLs	silc			voice-and-vide	80	610	3	706	
802.11a/n/ac	sip			voice-and-vide	90	65	3	5060	
802.11b/g/n	sip-tls			voice-and-vide	90	1428	3	5061]
 Media Stream 	sitaradir			other		710	3	2631	-{
Application	sitaramgmt	:		other		709	3	2630	
 Visibility And 	sitaraserve	r		other		708	3	2629	-(
Control AVC Applications	sixtofour-ip	v6-tunnele	<u>d</u>	net-admin		1223	13	330	
AVC Profiles	skinny			voice-and-vide	90	63	13	63	
Country	skip			layer3-over-ip		811	1	57	
Timers	skronk			other		374	3	460	
Netflow	skype			voice-and-vide	90	83	13	83	-1
▶ QoS	slina			voice-and-vide	20	892	13	440	-6

Application Visibility and Control

- With AVC, you can create rules to mark untagged applications (but also to permit or deny some application traffic!):
- 1. Create a new policy
- 2. Add rules, including what application to recognise, and what to do with it:

Wireless > AVC > AVC Profiles > New


AVC Profile > Rule > 'help_untagged_mobile_apps'

Application Group	voice-and-video 👻
Application Name	skype 👻
Action	Mark 🔻
Dscp (0 to 63)	Platinum(voice) 🔻
	and the first of the second

Application Name	Application Group Name	Action	DSCP	
skype	voice-and-video	mark	46	
<u>voutube</u>	voice-and-video	mark	34	
http	browsing	mark	0	

 Marking application will help prioritisation between AP and WLC, and from AP to the cell

Application Visibility and Control

3. Apply your policy to the WLAN:

Watch your traffic: 4.

Continuation or non-HTTP traffic	15.4200600	74.125.7.241 172.31	L.255.101	HTTP
🗄 Frame 11204: 1556 bytes on wi	e (12448 bits), 1556 bytes	captured (12448 bits) on	interface 0	
🗄 Radiotap Header v0, Length 26				
🗉 IEEE 802.11 QOS Data, Flags: .	F.C			
🗄 Logical-Link Control				
🖃 Internet Protocol Version 4, 1	src: 74.125.7.241 (74.125.7.	241), Dst: 172.31.255.10	1 (172.31.255	.101)
Version: 4				
Header length: 20 bytes				
🗄 Differentiated Services Fie		Forwarding 41: CN: 0x0	0: Not-ECT (N	lot ECN-Ca
Total endth: 1497		~		
VN-2000 @ 2014	UISCO ANO/OF ITS ATTILIATES. ALI FIGN	ts reservea.	UISCO F	JIIQU

Bandwidth Control – per User

You can also control upstream and downstream bandwidth consumption:

Edit QoS Profile

For each QoS profile, per user or per SSID	QoS Profile Name Description	platinum For Voice Application	ıs		
 The limitation will apply to each WLAN to which you apply 		dwidth Contracts (kbps) *			
, II ,	Average Data Rate	0	UpStream 0		
the QoS profile	Burst Data Rate	0	0		
	Average Real-Time Rat	te 0	0		
	Burst Real-Time Rate	0	0		
	Per-SSID Bandwidth	Contracts (kbps)) *		
		DownStream	UpStream		
	Average Data Rate	0	0		
	Burst Data Rate	0	0		
Wireless > QOS > Profiles > Edít	Average Real-Time Rat	te O	0		
	Burst Real-Time Rate	0	0		
	· • • • • • • •				
BRKEWN-2000 © 2014 Cisco	and/or its affiliates. All rights	reserved	Cisco Public		

© 2014 Ci

Bandwidth Control – per User

You can also control upstream and downstream bandwidth consumption:

WI ANs > Edit 'New'

But if QoS profile is not right for one WLAN, you can override for that WLAN!

General Security	QoS Policy	-Mapping Advanc
Override Per-User Band	dwidth Contra	cts (kbps) 16
	DownStream	UpStream
Average Data Rate	0	0
Burst Data Rate	0	0
Average Real-Time Rate	0	0
Burst Real-Time Rate	0	0
Burst Real-Time Rate	0	0
Burst Real-Time Rate	o dwidth Contra	0 cts (kbps) <u>16</u>
Burst Real-Time Rate Clear Override Per-SSID Bane	o dwidth Contrac DownStream	0 cts (kbps) ¹⁶ UpStream
Burst Real-Time Rate Clear Override Per-SSID Band Average Data Rate	0 dwidth Contrac DownStream	0 cts (kbps) ¹⁶ UpStream 0
Burst Real-Time Rate Clear Override Per-SSID Band Average Data Rate Burst Data Rate	0 dwidth Contrac DownStream 0	0 cts (kbps) ¹⁶ UpStream 0 0

Bandwidth Control – per User

You can also control upstream and downstream bandwidth consumption:

There is even a specific bandwidth control for Webauth WLAN users (guests)

Wireless > Ros	> Role > New				
MONITOR WLANS CON	TROLLER WIRELESS				
Edit QoS Role data rate	es				
QoS Role Name	quests				
Per-User Bandwidth Contracts (kbps) *					
Average Data Rate	0				
Burst Data Rate	0				
Average Real-Time Rate	0				
Burst Real-Time Rate	0				
1					

ecurity > L	-00001900	MSEr -	14600
ONITOR <u>W</u> LANs	<u>C</u> ONTROLLER	W <u>I</u> RELESS	SECURITY
ocal Net Users >	New		4
			1
User Name	User1		
Password			1
Confirm Password			
Guest User	\checkmark		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lifetime (seconds)	86400		
Guest User Role			1
Role	auest		_

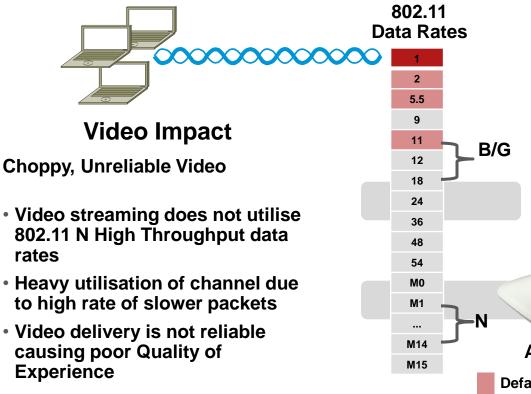
BRKEWN-2000

Bandwidth Control – per Device Type

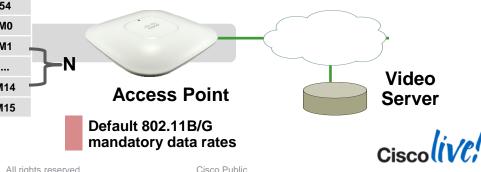
You can also identify connecting devices, from the WLC or though Cisco ISE, and create a policy based on what they are:

	How to iden	tífy that devíce		Action	at policy to app	N N
Policy >	> Edit		-	IPv4 ACL	none 🔻	1
				VLAN ID	0	· · · · · · · · · · · · · · · · · · ·
Policy f	Name		iPads	Qos Policy	none 🔻	
Policy 1	ſd		1	Session Timeout (seconds)	1800	
			1	Sleeping Client Timeout (hours)	12	
Match C	riteria			<u></u>		5
Match F	Role String			Active Hours		
Match 8	ЕАР Туре	EAP-TLS 🔻	· · · · · · · · · · · · · · · · · · ·	Day	Mon 🔻	\
Device	Туре	Android	•	Start Time	Hours Mins	1
		Android Apple-Device	۲ L	End Time	Hours Mins	<i>¿</i>
Device		Apple-Device Apple-MacBook Apple-iPad Apple-iPhone		2	Add	
List		Apple-iPod Aruba-Device	=	Start Day Time		
` \.	A a hara a h	Augurner Land	the second		and the th	
	Close to :	100 types on W	LC	served. Cisco P		Cisco

Configuring Policies


You can then apply the policies to the WLANs, in the order you want them to be applied, up to 16 policies per WLAN:

 Each policy can group several devices



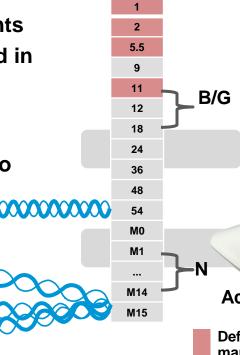
Video Multicast Delivery Challenges

Technical Challenges

- Multicast packets (UDP) are sent as broadcast packets over the air per 802.11 standard
- Broadcast packets do not use error correction: "fire and forget"
- Broadcast packets are sent at highest basic/mandatory data rate.

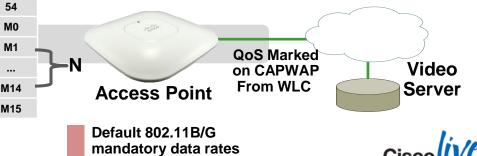
© 2014 Cisco and/or its affiliates. All rights reserved.

Video Multicast Delivery Solution - VideoStream


Video Impact

- Smooth, Reliable Video delivered to multiple clients
- Quality of Video protected in varying channel load conditions
- Prevents video flooding

BRKFWN-2000


 Prioritises Business Video over other video

Technical Solution

- IGMP state monitored for each client. We only send video to clients requesting it
- Multicast packets replicated at AP and sent to individual clients at their data rate
- Resource Reservation Control (RRC) is used to prevent channel oversubscription. Works in conjunction with Voice CAC
- Stream Prioritisation ensures important videos take precedence over others
- SAP/SNMP error message created when Channel Subscription is violated

Cisco Public

Cisco VideoStream - How Does it Work?

- 5 6. Multicast source 1. Client sends IGMP sends IGMP join join response 2. WLC intercepts 7. Multicast stream IGMP join · sent 3. WLC sends AP 8. WLC forwards RRC request multicast stream to AP sends RRC 4. AP response 9 AP converts stream 5. WLC forwards join to unicast and
 - Ciscolive;

request

delivers to client

Cisco VideoStream - Configuration

Create your streams

(Create your	rstreams			What do you tell your users			
cisco		<u>M</u> ONITOR <u>W</u> LANS <u>C</u> ONTROLLER WIRELESS <u>S</u> ECURITY MANAGEMEN			COMN	íf you deny a stream		
W	lireless	Media Stream > New			- 2	Media Strea	m >General	
* *	Access Points Advanced Mesh RF Profiles	Stream Name Multicast Destination Start IP Address(ipv4/ipv6) Multicast Destination End IP Address(ipv4/ipv6)	MyCorpvideo 239.1.1.1 239.1.1.2 500 eters			Multicast Direct feature Finabled Session Message Config		
	FlexConnect Groups FlexConnect ACLs	Maximum Expected Bandwidth(1 to 35000 Kbps) Resource Reservation Control(RRC) Parameter			- T	Session announcement State Session announcement URL		 Enabled http://example.com/yougotdenied.htm
Þ	802.11a/n/ac	Select from predefined templates	Select	Select			uncement Email	
+	802.11b/g/n Media Stream General Streams	Average Packet Size (100-1500 bytes) RRC Periodic update RRC Priority (1-8)	1200	Very Coarse Coarse(belo Ordinary(bel Low(below 1	w 500 Kbp low 750 Kb	ps)	uncement Phone uncement Note	555-1234 Sorry you got denied, not enough bandwidth
•	Application Visibility And Control	Traffic Profile Violation	best-effor	Medium(below 1 High(below 5	ow 3 Mbps)			

Cisco VideoStream - Configuration

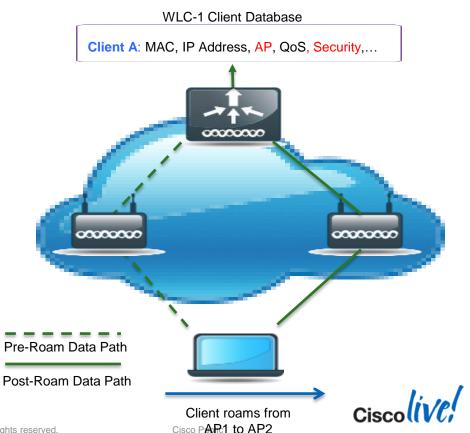
Fine tune Video BW consumption

Nireless	802.11a(5 GHz) > Media					
 Access Points All APs Radios 802.11a/n/ac 802.11b/g/n Dual-Band Radios Global Configuration 	Voice Video Media General					
Advanced	Unicast Video Redirect					
Mesh	Multicast Direct Admission Control					
RF Profiles FlexConnect Groups FlexConnect ACLs 802.11a/n/ac Network RRM RF Grouping TPC DCA	Maximum Media Bandwidth (0-85(%)) Client Minimum Phy Rate 1 Maximum Retry Percent (0-100%) Media Stream - Multicast Direct Par	85 6000 80 neters				
Coverage General Client Roaming EDCA Parameters DFS (802.11h) High Throughput (802.11n/ac) CleanAir	Multicast Direct Enable Max Streams per Radio Max Streams per Client Best Effort QoS Admission	 No-limit ▼ No-limit ▼ Enabled 				
802.11b/a/n	and and and and	V Marcanet				

- Do not forget to enable VideoStream:
- Globally (Wireless > Media Stream > General > Multicast Direct)
- Or per band

Roaming in 802.11 and Challenges

- Moving association from one AP to another with minimum disruption to service
- Meeting the roaming requirements for applications (e.g. 20-50 milliseconds for voice applications).
- Application should not restart due to IP address changes or IP stack reset.
- Authenticate the roaming client on the new AP within 'roaming deadline.'
- Apply same authorisation policies (e.g. AAA, QoS, VLAN, ACL)


How Long Does an STA Roam Take?

- Time it takes for:
 - Probe for and select a new AP +
 - Client to disassociate +
 - 802.11 Association +
 - 802.1X/EAP Authentication +
 - Rekeying +
 - IP address (re) acquisition
- All this can be on the order of seconds...

Roaming: Intra-Controller

- Intra-controller roam happens when a STA moves association between APs joined to the same controller
- Client must be re-authenticated and new security session established
- Controller updates client database entry with new AP and appropriate security context
- No IP address refresh needed

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Centralised Key Management (CCKM)

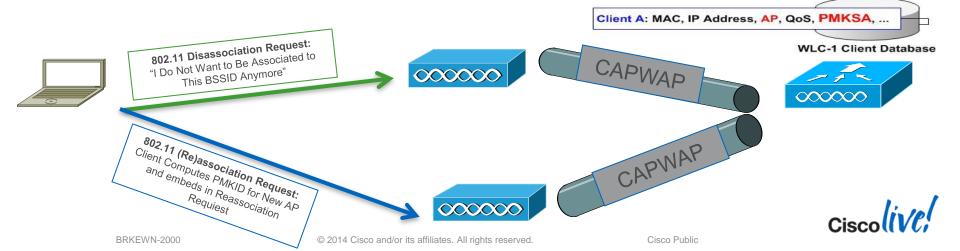
- Cisco introduced CCKM in CCXv2 (pre-802.11i)
- In highly controlled test environments, CCKM roam times consistently measure in 5-8 ms!
- CCKM is most widely implemented in ASDs (e.g., VoWLAN devices)
- WLCs must be in the same mobility group
- CCX-based laptops may not fully support CCKM depends on supplicant capabilities

PMKID Caching

- Optional component of 802.11i specification
- PMK Security Association (PMKSA) is stored by authenticator
- PMKSA includes:
 - PMKID

HMAC-SHA1-128 (PMK || BSSID || STA Mac)

- Lifetime
- PMK (32 bytes)
- BSSID (6 bytes)
- Client's MAC (6 bytes) AKM (Authentication and Key Management)


OKC/PKC

- Requires client/supplicant support
- Supported in Windows since XP SP2, but NOT in any Apple devices
- Many ASDs support OKC/PKC
- Check on client support for TKIP vs. CCMP
- Enabled by default on WLCs with WPAv2
- Requires WLCs to be in the same mobility group
- Important design note: pre-positioning of roaming clients consumes spots in client DB
- In <u>highly controlled test environments</u>, OKC/PKC roam times consistently measure in 10-20 ms

Opportunistic/Proactive Key Caching (OKC/PKC)

- 1. WLC extracts PMKID from 802.11 (Re)association request
- 2. WLC computes the new PMKID based on the PMKSA and other information it knows (BSSID, Client MAC)
- 3. WLC compares values if a match, full 802.1X/EAP authentication is skipped and WLC & client go directly to the 4-way handshake, and updates PMKSA in client DB
- 4. If they don't match, WLC sends the STA an EAP-Identity Request to initiate full 802.1X/EAP Authentication

PMKID (Sticky Key) Caching

- Roaming client needs to do full authentication on each new AP
- Client should keep the PMKSA associated with all APs. Memory usage on small client can be costly.
- up to 8 APs will be supported
- Support for Local Mode for AP's ONLY

CLI ONLY:

config wlan security wpa wpa2 pkc-cache enable/disable <wlan-id>

Example:

(5500) >config wlan security wpa wpa2 pkc-cache enable 3

802.11r

- 802.11r is a ratified IEEE standard, based in large part on CCKM
- 802.11r: "Fast (Basic Service Set) BSS Transition"
- Cisco WLCs have implemented 802.11r in 7.2.110.0 and FlexConnect AP in 7.3
- In <u>highly controlled test environments</u>, 802.11r roam times are comparable to CCKM times
- Low adoption rate
- Required for WiFi Voice-Enterprise certification
- Your mileage may vary

802.11r Configuration

- config wlan security ft [enable | disable] <wlan-id>
- config wlan security ft reassociation-timeout <seconds> <wlan-id>
- config wlan security ft over-the-ds <enable/disable> <wlan-id>
- config wlan security wpa akm ft-psk [enable | disable] <wlan-id>
- config wlan security wpa akm ft-802.1X [enable | disable] <wlan-id>

cisco

MONITOR

WLANS CONTROLLER

	WLANs	General Sec	urity QoS I	Policy-M				
	WLANs	Layer 2 La	iyer 3 🔰 AAA Ser	vers				
	WLANs	Reassociation Tim	neout 20 Seconds					
$WLANs > \langle WLAN id \rangle >$	Advanced	Protected Mana	Protected Management Frame					
		PMF	Disable	ed 💌				
Security > Layer 2		WPA+WPA2 Par	ameters					
Coounty > Eayor 2		WPA Policy						
		WPA2 Policy	v					
		WPA2 Encrypt	ion 🔽 AES	Пткі				
		Authentication	Authentication Key Management					
		802.1X	Enable					
		ССКМ	Enable					
		PSK	Enable					
		FT 802.1X	Enable					
		FT PSK	Enable					
		WPA gtk-rand State 14	tk-randomize					
		4						

© 2014 Cisco and/or its affiliates. All rights reserved.

Advanced

Assisted Roaming - 802.11k

- Client devices can optimise roaming performance and put TX radio to sleep as much as possible to reduce battery usage
 - 802.11k client requests a neighbour report containing information about known neighbour APs that are candidates for a service set transition
 - 802.11k neighbour list reduces the need for active and passive scanning to optimise their channel scanning, roaming, and battery usage
 - CCX neighbour list is not optimised; 802.11k neighbour list is optimised for each client
- Client optimised neighbour list based on WLC RRM neighbour table
 - This provides an Assisted Roaming feature based on the optimised neighbour list
 - Supported on 802.11n indoor AP and single controller support
 - Cisco implementation based on RRM neighbour list update
 - Partial 802.11k implementation with neighbour list that shows BSSID and RSSI of neighbour radios

Assisted Roaming for non-11k Clients

- Assisted Roaming utilises 802.11k generated neighbour list capabilities to optimise roaming for non-11k clients
 - A "prediction" neighbour list can be generated for each client without the client sending an 11k neighbour list request
 - When enabled on a WLAN; after each successful client association/re-association the same neighbour list optimisation on the non-11k client to generate the neighbour list and store the list in the client MSCB entry
 - Clients at different locations should have a slightly different list since the client probes are seen with different RSSI values by different neighbours
 - As clients usually probe before any association or re-association, this list will be constructed with the most updated probe data and should predict the next AP the client is likely to roam to
- WLC discourages clients from roaming to less desirable neighbours by denying association if association request to an AP does not match entries on the stored prediction neighbour list
 - CCX status code 0xCC will be sent the client for "Association denied due to nonoptimised association"

802.11k Configuration

- config wlan assisted-roaming neighbor-list [enable | disable] <wlan-id>
- config assisted-roaming floor bias <dB>
- config wlan assisted-roaming dual-list [enable | disable] <wlan-id>
- config wlan assisted-roaming prediction [enable | disable] <wlan-id>
- config wlan assisted-roaming prediction minimum <1-6>
- config wlan assisted-roaming denial maximum <1-10>

Where Are We Now?

• We have:

Cell built based on device types and density

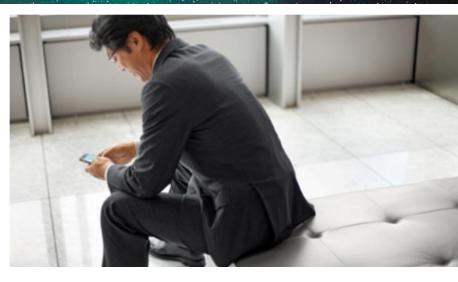
- ✓ Good overlap and roaming optimisation
- ✓ QoS for wireless and wired traffic
- ✓ EDCA optimised for voice/video
- ✓ CAC to block excessive flows and guarantee ongoing calls quality
- ✓ AVC to mark and filter traffic
- ✓ VideoStream to optimise video delivery
- ✓ Fast and Secure and Optimised Roaming with 802.11r and 802.11k
- No network is perfect, but our network is optimised for mobile applications

BRKEWN-2000

Recommended Reading

Ciscolive!

Q & A


Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site <u>www.ciscoliveaustralia.com/mobile</u>
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations. www.CiscoLiveAPAC.com

Ciscolive!

#