TOMORROW starts here.

Converged Access Mobility Design & Architecture

BRKEWN-2022

Sujit Ghosh Sr. Mgr. Technical Marketing Enterprise Networking Group

Converged Access Architecture Overview

Diving into the "One Network"

BRKCRS-2022 – Session Overview and Objectives

- Come to this session to learn what Converged Access is how it operates and the features supported in the latest release.
- Attendees at this session will gain a greater understanding of the design and operation
 of the Converged Access solution, be able to understand how it fits into the broader Cisco
 wired and wireless portfolio from both a product and a design perspective, and recognise
 the relevant benefits for their own network environments.
- In addition to introducing the terminology and platforms that make up the Cisco Converged Access system, we will look into use cases for High Availability Deployment, Application Visibility, Service Discovery Gateway protocol, 802.11ac support and TrustSec.

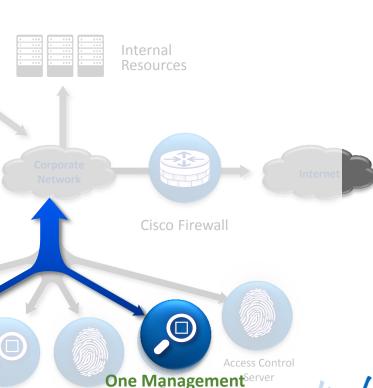
Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

One Network with Converged Access


IOS Based WLAN Controller

- Consistent IOS and ASIC as Catalyst 3x50
- Required to scale beyond 200/250 AP or 8 000/16 000 client domains

Converged Access Mode

- Integrated wireless controller
- Distributed wired/wireless data plane (CAPWAP termination on switch)

Converged Wired/Wireless Access – Benefits

Single
platform for
wired and
wireless

Common IOS, same administration point, one release

Network wide visibility for faster troubleshooting

Wired and wireless traffic visible at every hop Consistent security and Quality of Service control

Hierarchical bandwidth management and distributed policy enforcement Maximum resiliency with fast stateful recovery

Layered network high availability design with stateful switchover

Scale with distributed wired and wireless data plane

Large stack bandwidth; 40G wireless / switch; efficient multicast; 802.11ac optimised

Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

Unified Access Components – Complete Overview

One Policy

with Identity Services Engine (ISE)

- BYOD policy management
- Device profiling and posture
- Guest access portal

Catalyst 3850

One Management

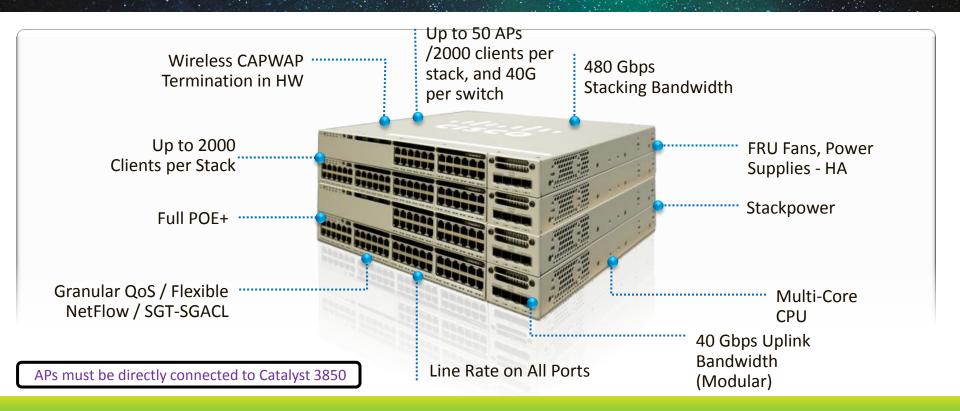
with Cisco Prime 2.0

- Full wired and wireless management
- User/device centric view
- Intuitive troubleshooting workflows

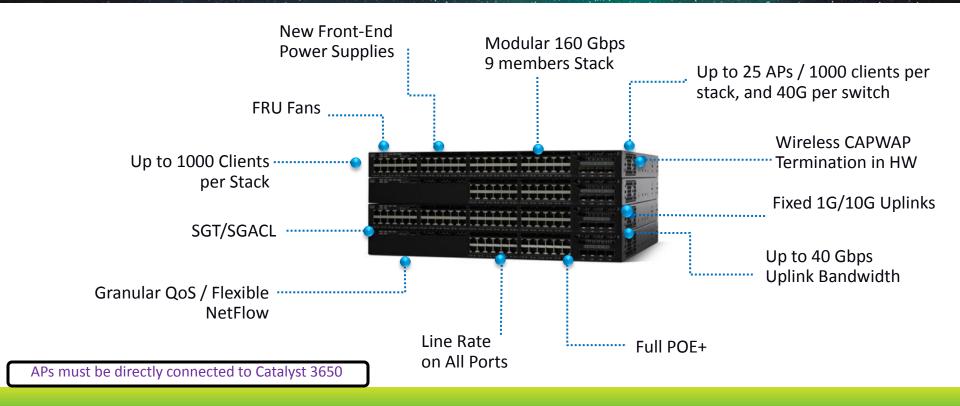
Cisco Prime

5760 Wireless Controller

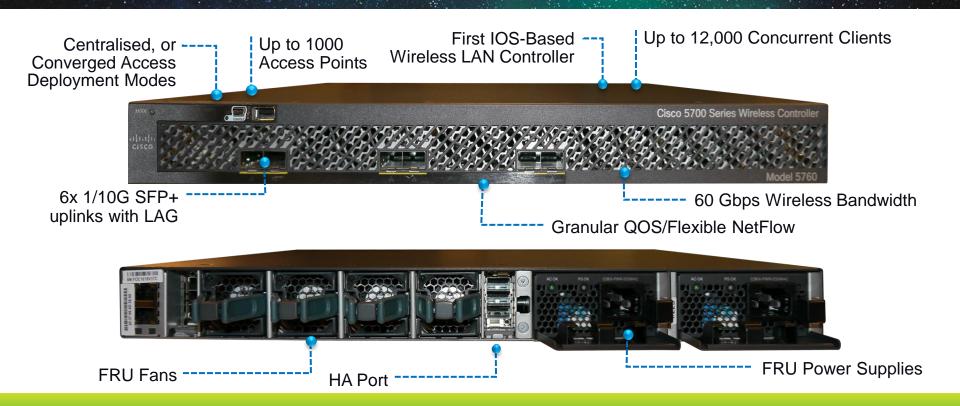
Catalyst 3850/3650


- Industry's first fully integrated wired and wireless switch
- Wireless: 480G stack, 50 APs, 2K clients, 40G
- Flexible NetFlow, Granular QoS

5760 Wireless Controller


- Consistent IOS with Catalyst 3850
- 60G, 1K APs, 12K Clients, N+1 Redundancy
- Flexible Netflow, Granular QOS

Catalyst 3850 Switch - Platform Overview



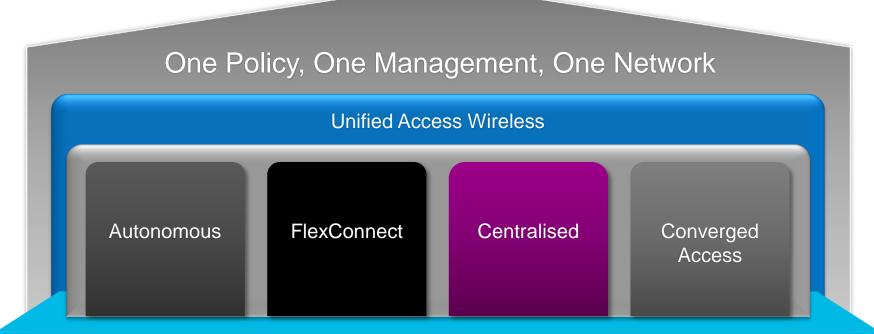
New Catalyst 3650 Switch – Platform Overview

Built on Cisco's Innovative "UADP" ASIC

Wireless LAN Controller (WLC) 5760 - Platform Overview

Built on Cisco's Innovative "UADP" ASIC

Agenda


- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support

BRKFWN-2022

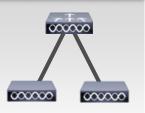
- High Availability- AP SSO
- Bringing Together Wired and Wireless

Cisco One Network: Wireless Deployment Modes

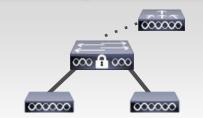
Unparalleled Deployment Flexibility

Unified Access - Wireless Deployment Modes

Autonomous


Standalone APs

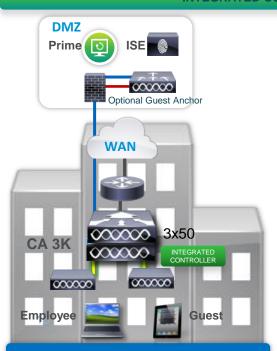
FlexConnect


Traffic Distributed at AP

Centralised

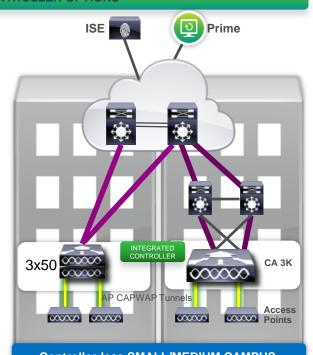
Traffic Centralised at Controller

Converged Access



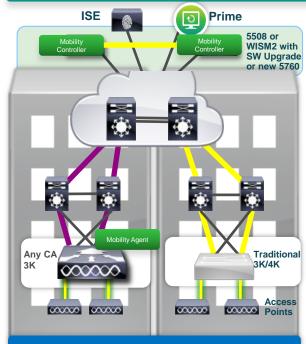
Traffic Distributed at Switch

Target Positioning	Small Wireless Network	Branch	Campus	Branch and Campus		
Purchase Decision	Wireless only	Wireless only	Wireless only	Wired and Wireless		
Benefits	Simple and cost-effective for small networks	Highly scalable for large number of remote branches Simple wireless operations with DC hosted controller	 Simplified operations with centralised control for Wireless Wireless Traffic visibility at the controller 	 Wired and Wireless common operations One Enforcement Point One OS (IOS) Traffic visibility at every network layer Performance optimised for 11ac 		
Key Considerations	Limited RRM, no Rogue detection	L2 roaming only WAN BW and latency requirements	System throughput	Catalyst 3850/3650 in the access layer		


Converged Access Deployment Modes

INTEGRATED CONTROLLER OPTIONS

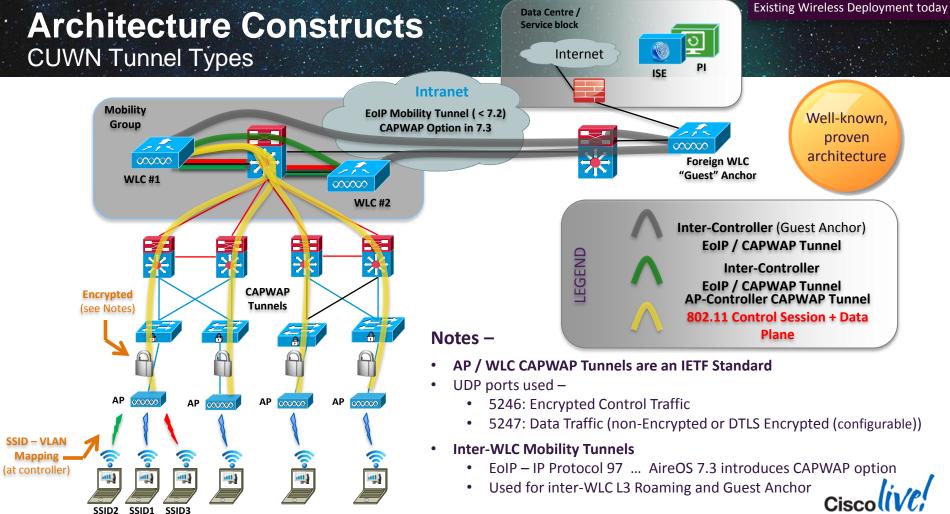
Controller-less BRANCH

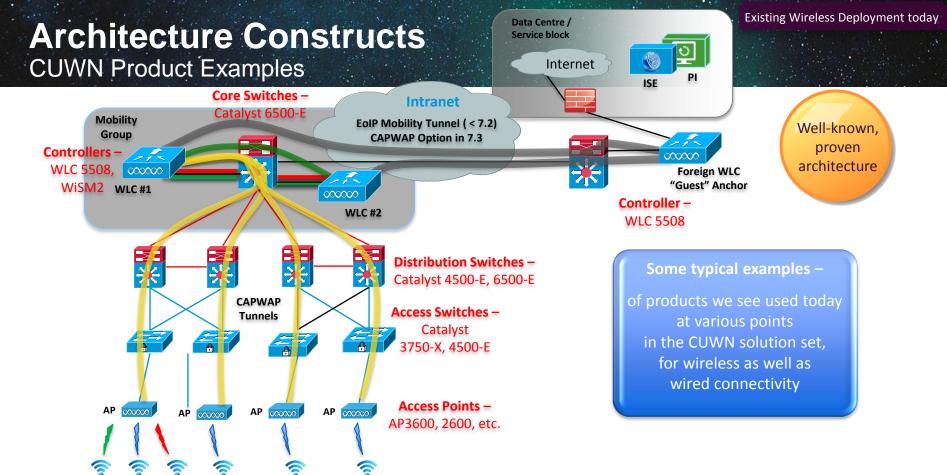

- Up to 25 Access Points with 3650 (50 w3850)
- Up to 1000 Clients per branch with 3650
- All WAN Services Available (local termination)

Controller-less SMALL/MEDIUM CAMPUS

- Up to 200 Access Points with only 3650s
- Up to 250 Access Points with 3850s
- Up to 8000 Clients with only 3650s (16k w/3850)
- Visibility, Control and resiliency

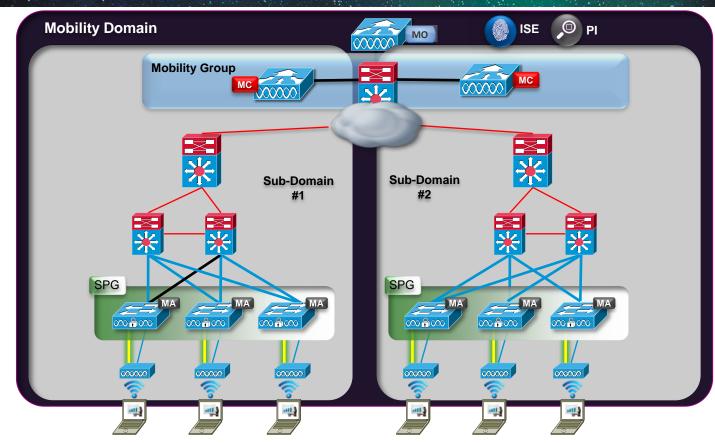
EXTERNAL MOBILITY CONTROLLER NEEDED


LARGE CAMPUS with Controllers


- Up to 72 000 Access Points (5760 or WiSM-2)
- Up to 1 080 000 clients (WiSM-2 as MCs)
- · Largest Layer 3 roaming domains

Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless



SSID2 SSID1 SSID3

Converged Access — Deployment Overview

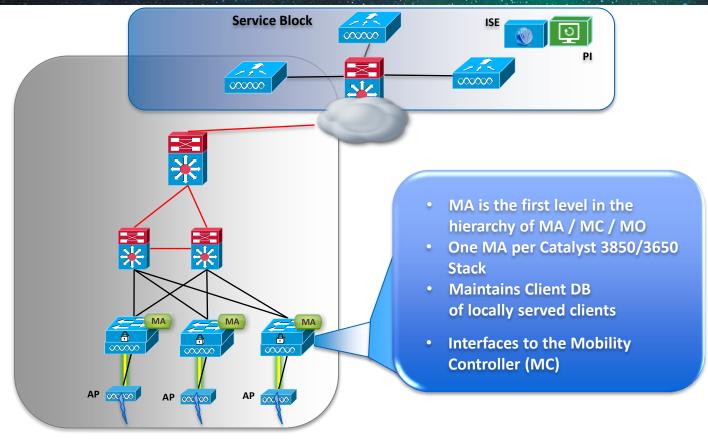
Converged Access

Components - Physical vs. Logical Entities

Physical Entities –

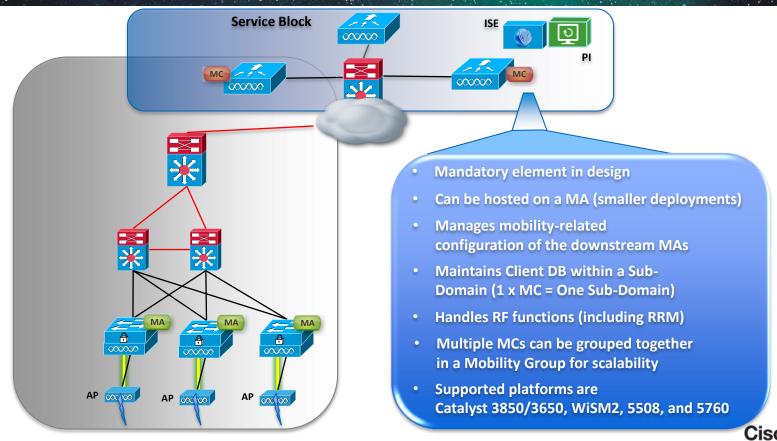
- Mobility Agent (MA) Terminates CAPWAP tunnel from AP
- Mobility Controller (MC) Manages mobility within and across Sub-Domains
- Mobility Oracle (MO) Superset of MC, allows for Scalable Mobility Management within a Domain

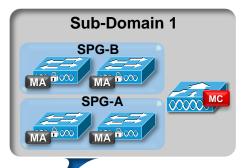
Logical Entities –


- Mobility Groups Grouping of Mobility Controllers (MCs) to enable Fast Roaming, Radio Frequency Management, etc.
- Switch Peer Group (SPG) Localises traffic for roams within its Distribution Block

MA, MC, Mobility Group functionality all exist in today's controllers (4400, 5500, WiSM2)

Converged Access


Physical Entities - Mobility Agents (MA)


Converged Access

Physical Entities – Mobility Controllers (MC)

Converged Access

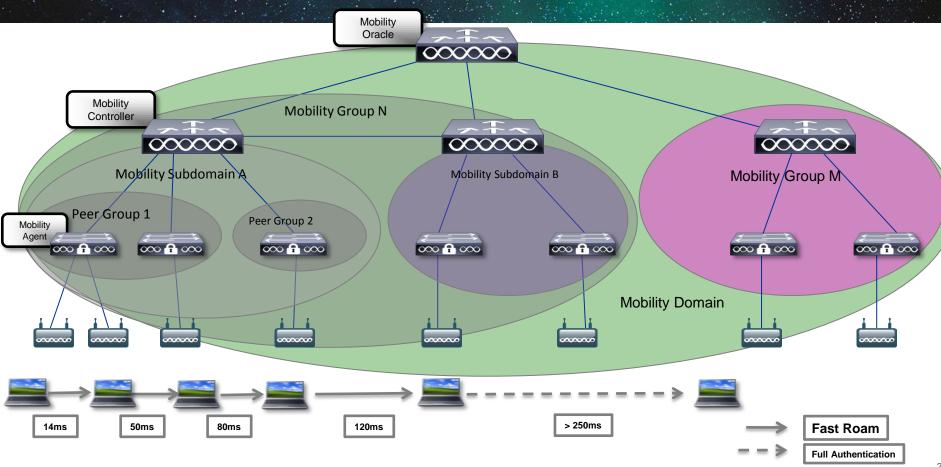
Logical Entities - Switch Peer Groups (SPGs)

- Made up of multiple Catalyst 3x50 switches as Mobility Agents (MAs), plus an MC (on controller as shown)
- Handles roaming across SPG (L2 / L3)
- MAs within an SPG are fully-meshed (auto-created at SPG formation)
- Fast Roaming within an SPG
- Multiple SPGs under the control of a single MC form a Sub-Domain

SPGs are a logical construct, not a physical one ...

SPGs can be formed across Layer 2 or Layer 3 boundaries

SPGs are designed to constrain roaming traffic to a smaller area, and optimise roaming capabilities and performance


Current thinking on best practices dictates that SPGs will likely be built around buildings, around floors within a building, or other areas that users are likely to roam most within

Roamed traffic <u>within</u> an SPG moves directly between the MAs in that SPG (CAPWAP full mesh)

Roamed traffic <u>between</u> SPGs moves via the MC(s) servicing those SPGs

Converged Access: Mobility Architecture

Converged Access - Scalability Considerations

As with any solution – there are scalability constraints to be aware of ...

These are summarised below, for quick reference

Scalability	3650 as MC (3.3.1SE)	3850 as MC (3.3.1SE)	WLC2504 (7.6)	WLC5760 (7.6)	WLC5508 (7.6)	WiSM2 (7.6)
Max APs Supported per MC	25	50	75	1000	500	1000
Max APs Supported in overall Mobility Domain	200	250	5400	72000	36000	72000
Max Clients Supported per MC	1000	2000	1000	12000	7000	15000
Max Clients Supported in overall Mobility Domain	8000	16000	72000	864000	504000	1.08M
Max number of MC in Mobility Domain	8	8	72	72	72	72
Max number of MC in Mobility Group	8	8	24	24	24	24
Max number of MAs in Sub-domain (per MC)	16	16	350	350	350	350
Max number of SPGs in Mobility Sub-Domain (per MC)	8	8	24	24	24	24
Max number of MAs in a SPG	16	16	64	64	64	64
Max number of WLANs	64	64	16	512	512	512

Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

Converged Access Deployment

Before You Begin – How to Connect APs

The Catalyst 3850 and 3650 support only directly attached APs

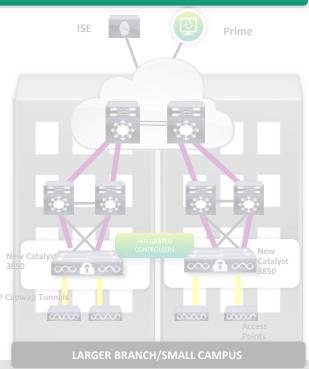
APs need to be in the same VLAN as the Wireless Management interface:

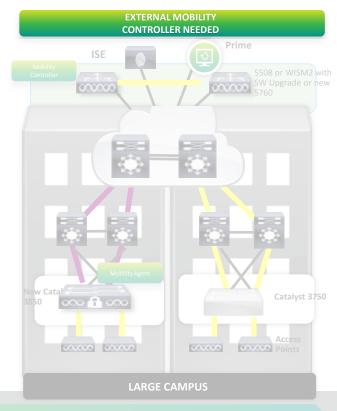
interface GigabitEthernet1/0/1
description to_AP
switchport access vlan 31
switchport mode access

```
interface Vlan31
ip address 192.168.31.42 255.255.255.0
!
wireless management interface Vlan31
```

If you do not define a wireless management VLAN on the 3x50, the switch will then be transparent to AP attachment and everything will continue to operate as it does today on a 3750-X.

As soon as you define a "wireless management interface VLAN", the Catalyst 3x50 will intercept all incoming AP CAPWAP requests, and terminate / process them at the local ASIC.


WLC 5760 supports only NON-directly attached APs


Same as it works today in CUWN: AP attached to a local switch (3750-X or alike) finds the centralised controller through DHCP option 43 or other methods and registers

Converged Access Deployment - Branch Use Case

INTEGRATED CONTROLLER OPTIONS DMZ Prime WAN 3850/ ∞ **A** ∞ ∞ 1 ∞ 000000 000000 Guest **Employee BRANCH**

UP TO 50 ACCESS POINTS

MULTIPLE STACKS, UP TO 250 APS

GREATER THAN 250 ACCESS POINTS

Converged Access Deployment

Branch Use Case - Mobility Configuration

Management VLAN Configuration

interface Vlan31 description MANAGEMENT VLAN ip address 192.168.31.42 255.255.255.0

SVIs for client VLANs defined locally on the switch

interface Vlan32 description Client VLAN32 ip address 192.168.32.2 255.255.255.0

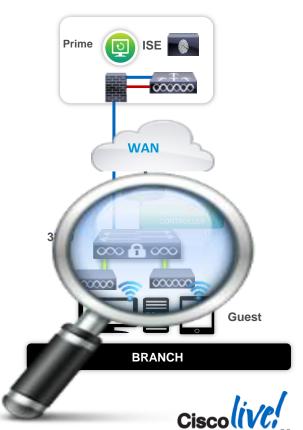
interface Vlan33 description Client VLAN33 ip address 192.168.33.2 255.255.255.0

Wireless Management Interface Configuration

3850 (config) # wireless management interface VLAN31

This activates the MA functionality

3850# show wireless Interface summary

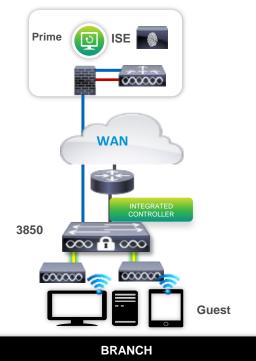

Wireless Interface Summary

AP Manager on management Interface: Enabled

Interface Name Interface Type VLAN ID IP Address IP Netmask MAC Address

Vlan31

Management 192.168.31.42 255.255.255.0 2037.06ce.0a55

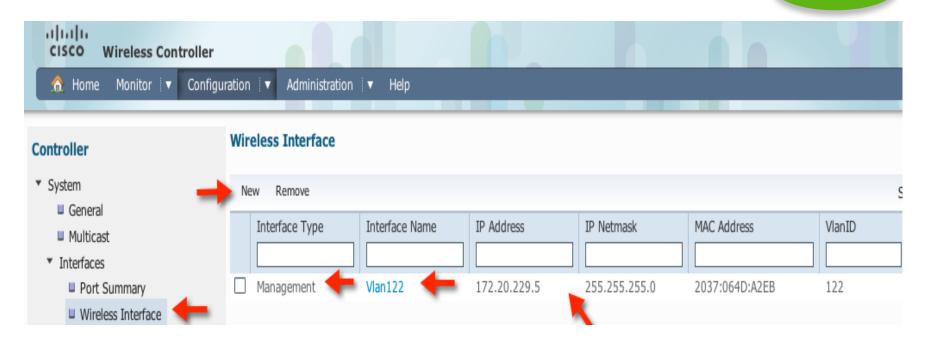


Converged Access Deployment

Branch Use Case - Mobility Configuration, continued

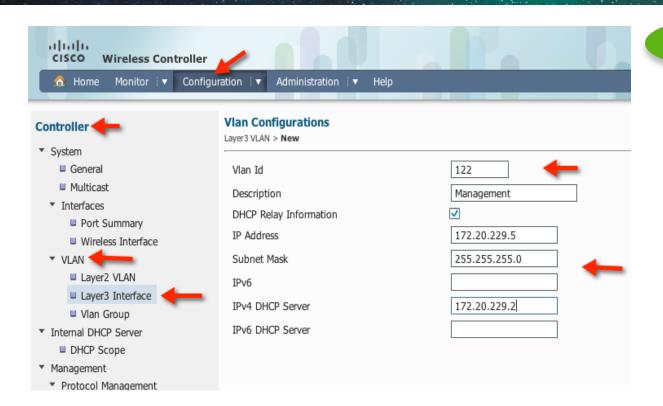
default

 Configuring Mobility Controller This activates the 3850 (config) # wireless mobility controller MC functionality Mobility role changed to Mobility Controller Please save config and reboot the whole stack 3850# sh wireless mobility summary After reboot Mobility Controller Summary: : Mobility Controller Mobility Role Mobility Protocol Port : 16666 Mobility Group Name : default Mobility Oracle IP Address : 0.0.0.0 : Enabled DTLS Mode Mobility Domain ID for 802.11r : 0xac34 Mobility Keepalive Interval : 10 Mobility Keepalive Count : 3 Mobility Control Message DSCP Value Mobility Domain Member Count Link Status is Control Path Status : Data Path Status Controllers configured in the Mobility Domain: Multicast IP Link Status


192.168.31.42 -

UP : UP

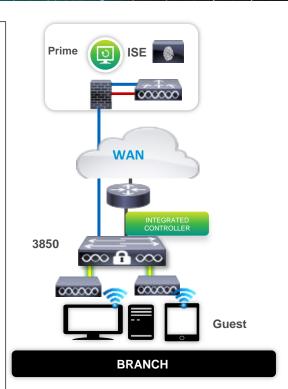
0.0.0.0


GUI: Wireless Management Configuration

IOS GUI

GUI: VLAN Interface Configuration

IOS GUI



Converged Access Deployment

Branch Use Case – AP Port and WLAN Configuration

```
    Access Point port configuration

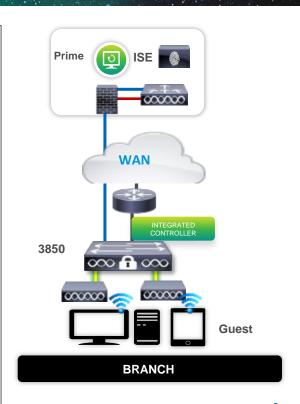
                                                                 Access Points need to be
    interface GigabitEthernet1/0/15
                                                                  configured on Wireless
           description - Access port for Access points
                                                                      Management
           switchport access vlan 31 -
                                                                         VLAN
           switchport mode access
    3850# show ap summary
         Number of APs: 1
         Global AP User Name: Not configured
         Global AP Dot1x User Name: Not configured
AP Name
                                   AP Model Ethernet MAC
                                                              Radio MAC
                                                                               State
                                             c47d.4f3a.ed80 04fe.7f49.58c0 Registered
AP3502I
                                   3502I
   WLAN Configuration
                                                            WLAN sample
         3850(config)# wlan WPA-PSK 4 wpa-psk
                                                            configuration
         3850(config-wlan)# client vlan 32
         3850 (config-wlan) # no security wpa akm dot1x
         3850 (config-wlan) # security wpa akm psk set-key ascii 0 Cisco1234
         3850 (config-wlan) # no shut
```


Converged Access Deployment

Branch Use Case – Client Connectivity

Client Connectivity

3850# sh wireless client summary

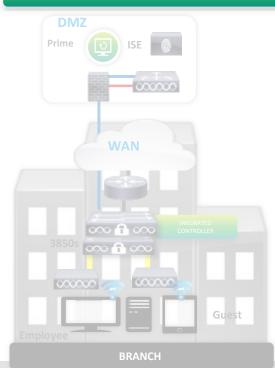

Number of Local Clients : 1

MAC Address	AP	Name	WLAN	State		Protocol
f81e.dfe2.e80e	AP:	3502I		4	UP	11n(5)

3850# sh wcdb database all

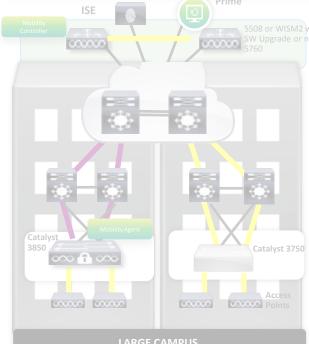

Total Number of Wireless Clients = 1
Clients Waiting to Join = 0
Local Clients = 1
Anchor Clients = 0
Foreign Clients = 0
MTE Clients = 0

Mac Address	VlanId	IP Address	Auth	Mob
f81e.dfe2.e80e	32	192.168.32.57	RUN	LOCAL


GUI: WLAN Configuration

Larger Branch / Small Campus Use Case

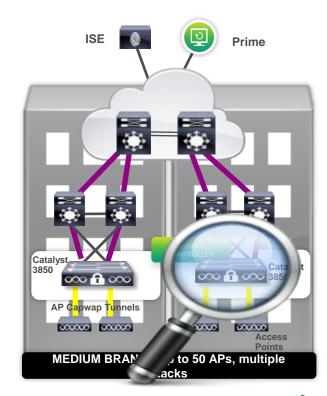
INTEGRATED CONTROLLER OPTIONS



ৃ Prime Catalyst Catalyst OOO A OOO 3850 3850 ∞ Ω AP Capwap Tunnels 000000 000000 000000 000000 Access

LARGER BRANCH / SMALL CAMPUS

MULTIPLE STACKS, UP TO 250 APS


EXTERNAL MOBILITY CONTROLLER NEEDED

LARGE CAMPUS

Converged Access Deployment Larger Branch / Small Campus Use Case – SPG Configuration

3850-MC1# sh wireless mobility summary Mobility Controller Summary: : Mobility Controller Mobility Role Mobility Protocol Port Mobility Group Name : default Mobility Oracle IP Address : 0.0.0.0 DTLS Mode : Enabled Mobility Domain ID for 802.11r : 0xac34 : 10 Mobility Keepalive Interval : 3 Mobility Keepalive Count Mobility Control Message DSCP Value : 0 Mobility Domain Member Count Link Status is Control Path Status : Data Path Status Controllers configured in the Mobility Domain: IP Public IP Group Name Multicast IP Link Status default 0.0.0.0 UP : UP 192.168.31.42 -: GroupABC Switch Peer Group Name Switch Peer Group Member Count : 1 Bridge Domain ID : 0 Multicast IP Address : 0.0.0.0 Both control and data Public IP plane need to be UP ΙP Link Status 192.168.41.44 192.168.41.44 UP: UP

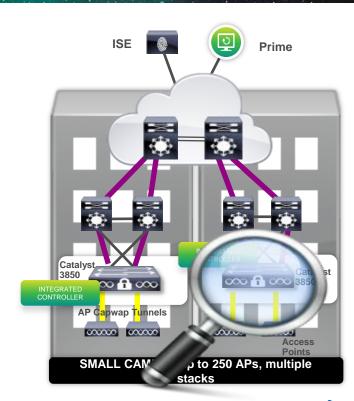
Larger Branch / Small Campus Use Case - Multiple MCs

 MC configuration on the 3850 to create a Mobility Group and add the other switch as a member

3850-MC1(config)# wireless mobility group name Mobility-GroupABC

3850-MC1(config)# wireless mobility group member ip 192.168.41.44 public-ip 192.168.41.44 Mobility-GroupABC

MC configuration on the other 3850

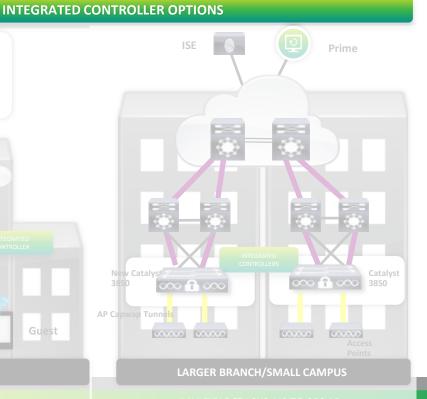

3850-MC2(config)# wireless mobility controller

Mobility role changed to Mobility Controller Please save config and reboot the whole stack

This switch is now also a Mobility Controller, not only a Mobility Agent

3850-MC2 (config) # wireless mobility group name Mobility-GroupABC

3850-MC2(config)# wireless mobility group member ip 192.168.31.42 public-ip 192.168.31.42 Mobility-GroupABC



Large Campus Use Case

∞ Ω ∞ ∞ \triangle ∞ 000000

BRANCH

UP TO 50 ACCESSS POINTS

EXTERNAL MOBILITY CONTROLLER NEEDED Prime ISE <u></u> Mobility 5508 or WISM2 Controller with SW upgrade 000000 000000 or 5760 Catalyst Catalyst 3750 ∞ Ω 000000 000000 000000 cocco Points **LARGE CAMPUS**

GREATER THAN 250 ACCESS POINTS

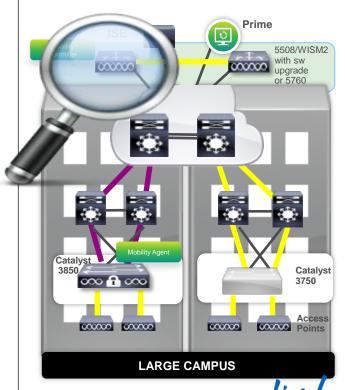
Large Campus Use Case – Mobility Configuration

Configure 5760 as MC and member of SPG

```
interface Vlan100
description WIRELESS MANAGEMENT VLAN
ip address 192.168.100.42 255.255.255.0
```

5760 (config) # wireless management interface VLAN100

5760 (config) # wireless mobility controller peer-group WestBldg


5760(config)# wireless mobility controller peer-group WestBldg member ip 10.1.1.5

Configure 3850 as MA

interface Vlan10
description MANAGEMENT VLAN
ip address 10.1.1.5 255.255.255.0

3850 (config) # wireless management interface VLAN10

3850 (config) # wireless mobility controller ip 192.168.100.42

Large Campus Use Case - Mobility Configuration, continued

· Mobility Group configuration

5760 (config) # wireless mobility group name cisco-live

5760 (config) # wireless mobility group member ip 10.1.1.5

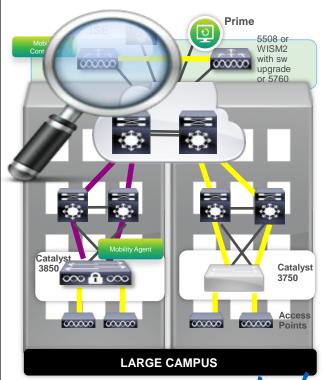
Verify the configuration

5760# sh wireless mobility summary

Mobility Controller Summary:

Mobility Role : Mobility Controller

Mobility Protocol Port : 16666


Controllers configured in the Mobility Domain:

IP Address	Public IP Address	Group Name	Multicast IP	Status
192.168.100.42	-	cisco-live	0.0.0.0	UP
10.1.1.5	10.1.1.5	cisco-live	0.0.0.0	UP

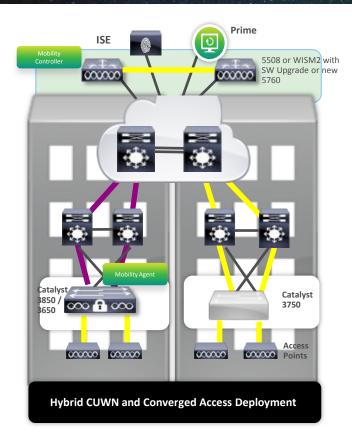
Switches configured in WestBldg switch Peer Group: 1

IP Address	Public IP	Address	Status

192.168.41.44 192.168.41.44 UP

GUI: Mobility Controller Configuration-5760

GUI: Mobility Agent Configuration CAT3850



GUI: Switch Peer Group Configuration

Hybrid Deployment – Key Considerations

- New Mobility is supported on 7.3.112, 7.5 and 7.6 with 5508 and WiSM2
- Only MC and MO functions are supported on the upgraded controller
 - "MA only" functionality for converged access APs is only supported on 3850
- Seamless and Fast roaming is supported between Converged Access and CUWN

Controllers need to be In the same Mobility Group

Roaming is always treated as a L3 roam

Traffic is anchored at the home switch/controller

- 5760 can terminate CAPWAP tunnel from APs connected to non-MA switches
- 3850 (acting as MA) will only allow APs to terminate CAPWAP locally

Cannot connect an AP to 3850 and have it registered to a CUWN controller

Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

IOS-XE-based Wireless Controllers - Highlights

Differentiating capabilities

• Optimised for 802.11ac deployments

Distributed data forwarding & services

Support for latest 3700 802.11ac AP!

Common IOS and Feature Set for Wired and Wireless

Granular QoS

Downloadable ACLs

EEM / TCL Scripting, Secure Copy

Flexible Netflow v9

- Multiple LAGs (Aggregated uplinks)
- Secure Web-auth redirection using HTTPS
- Right-To-Use license model

WLC 5760

- 60 Gbps wireless throughput
- Up to 1000 Aps
- Up to 12000 Clients

Catalyst 3850

- 40 Gbps wireless throughput
- Up to 50 directly connected APs / Stack
- Up to 2000 Clients per Switch/Stack

Catalyst 3650

- 40 Gbps wireless throughput
- Up to 25 directly connected APs / Stack
- Up to 1000 Clients per Switch/Stack

Converged Access Deployment - Software Matrix

Software compatibility matrix for IOS based Controllers:

5760	3850	3650	5508	MSE	ISE	ACS	Prime
3.2.0SE	3.2.0SE	-	7.3.112	-	1.1.1MR	5.2	-
3.2.1SE	3.2.1SE	-	7.3.112	-	1.1.3,1.1.2	5.2, 5.3	-
3.2.2SE	3.2.2SE	-	7.3.112/7.5+	-	1.1.3,1.1.2	5.2,5.3	-
3.2.3SE	3.2.3SE	-	7.3.112/7.5+	7.4	1.1.3,1.1.2	5.2, 5.3	2.0
3.3.0SE	3.3.0SE	3.3.0SE	7.3.112/7.5+	7.5	1.2		2.0*
3.3.1SE	3.3.0SE	3.3.0SE	7.3.112/7.5+	7.5	1.2		2.0*

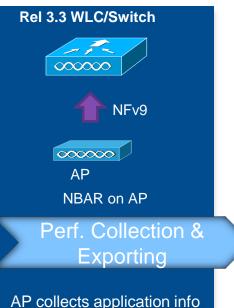
(*) IOS-XE 3.3 is not officially supported by PI 2.0 because it doesn't support the new features and hardware introduced in IOS-XE 3.3

Converged Access Deployment WLC 5760 (IOS-XE 3.3) vs. WLC 5508 (AireOS 7.6)

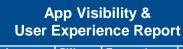
Feature	5508	5760	
Throughput	8 Gbps	60 Gbps Line-rate	
Scale	500 APs, 7000 Clients	1000 APs, 12000 Clients	
Data forwarding Modes	Local, Flex, Mesh, Outdoor, OEAP	Local Mode	
Resiliency	SSO, N+1, HA SKU	AP SSO, N+1, Multiple LAG, HA SKU	
QoS	Alloy (precious metal) QoS	Granular QoS (MQC), AFB	
Security	Dynamic ACLs (Airspace ACL)	Downloadable and Dynamic ACLs	
BYOD	ISE 1.2, CWA, Device Sensor, Policy Classification Engine	ISE 1.2, CWA	
AVC	AVC phase 2, Microsoft Lynch and Jabber support	AV phase 1, without the "C"	
Bonjour	Bonjour phase 2 (Location and AP detection)	Bonjour phase 1	
IPv6	IPv6 Client Mobility, First Hop Security, Source Guard	IPv6 Client Mobility, First Hop Security	
Management	Full featured GUI, AireOS CLI, Secure FTP	IOS CLI, EEM/TCL, Limited GUI	
Licensing	License PAK based on serial number	Right to use	

Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless



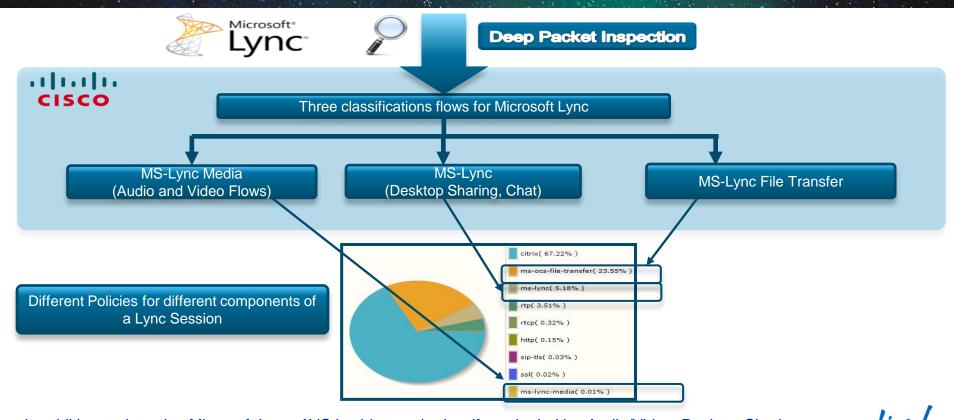
How AV Solution Works



Deep Packet Inspection

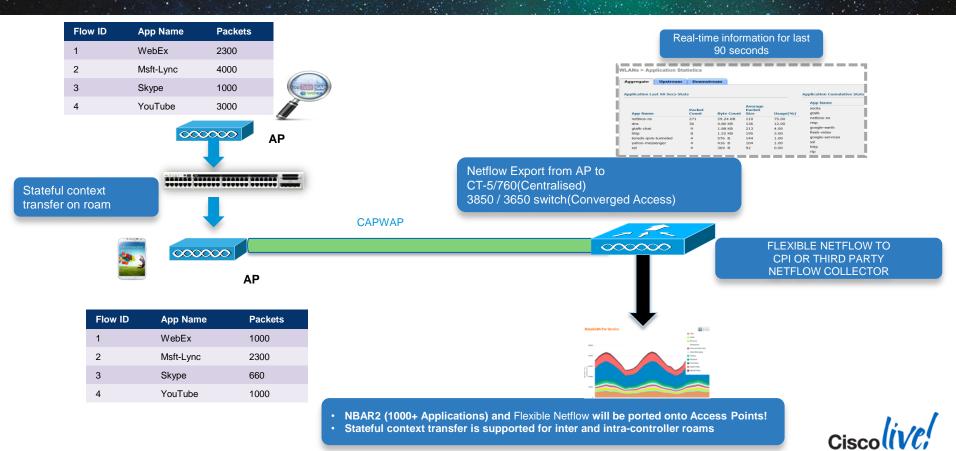
DPI engine (NBAR2) identifies applications using L7 signatures

AP collects application info and export it to controller/switch every 90 seconds



Reporting Tool

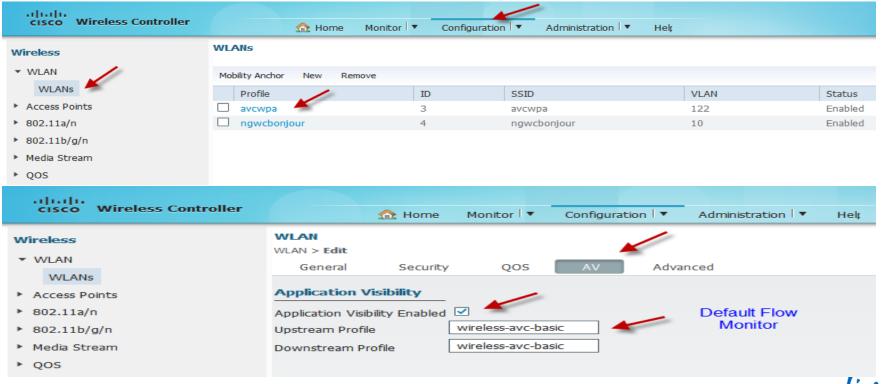
Advanced reporting tool aggregates and reports application performance



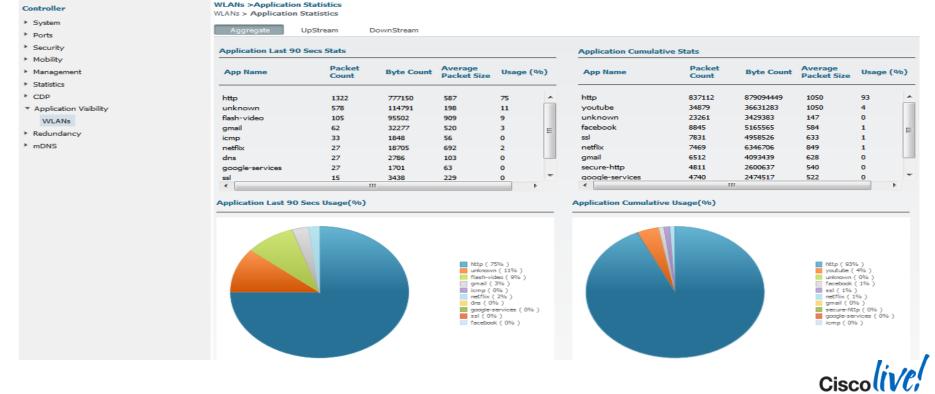
Overview: NBAR2 Classification of Microsoft Lync

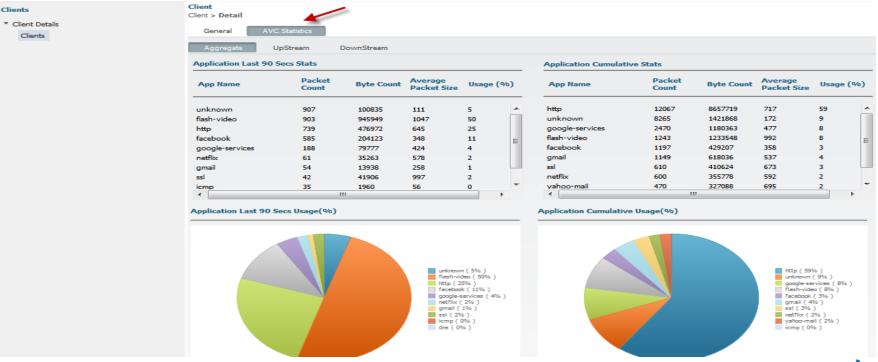
Cisco Public

Application Visibility



IOS XE 3.3 AV Supported Features


- Application Visibility No Control
- Supported on IOS platforms: 5760/3850/3650
- Use NBAR2 Protocol pack 5.1
- More than 1000 Applications
- Seamless Roaming
- Supported on the following Aps: AP1600, 2600, 3600 and 3700
- Wireless Clients only
- Centralised and Converged Access
- Flexible Netflow v9 Export to PI(PAM) and external collectors(Plixir, ActionPacked, etc)


AV Configuration from GUI AV enabled per WLAN basis

AV Monitoring and Statistics : GUI Client AVC statistics on the WLAN

AV Monitoring and Statistics: GUI Client AVC statistics – Per Client

NBAR/AV Facts

- Same AV profile can be mapped to multiple WLANs. But one WLAN can have only one AV profile
- Only 1 NetFlow exporter and monitor can be configured on WLC
- AV stats are displayed for top 30 applications on both GUI and CLI
- Any application, which is not supported/recognised by NBAR engine on WLC, is captured under bucket of UNCLASSFIED/Unknown traffic
- No limit on the number of AV profiles that can be created on WLC

NBAR Feature Limitations

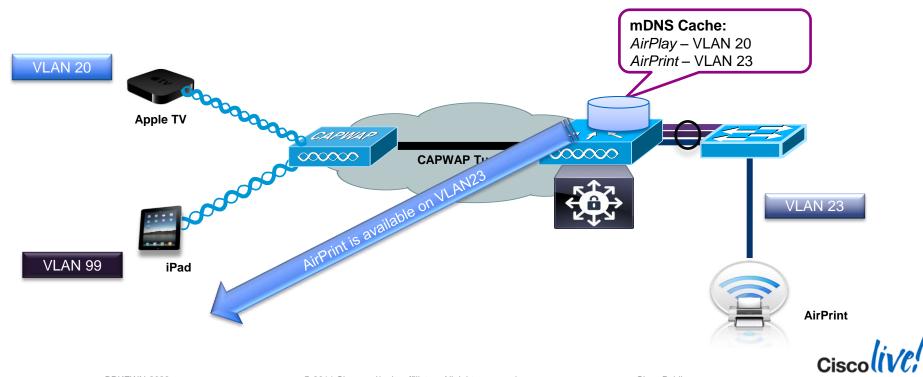
- IPv6 traffic cannot be classified
- Multicast traffic is not supported
- No Application Control Functionality in IOS XE 3.3

Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

Service Discovery Gateway for Cisco IOS- Platforms

- Catalyst 3560, 3750, 4500 platforms
- XE3.5.0E/15.2(1)E release Available
- Catalyst 3650 and 3850
- IOS XE 3.3.0SE release Available
- Catalyst 5760 Wireless LAN Controller
- IOS XE 3.3.0SE release Available
- Catalyst 6500
- 15.1(2)SY release Available
- ASR1000 and ISR
- XE 3.11 release Available

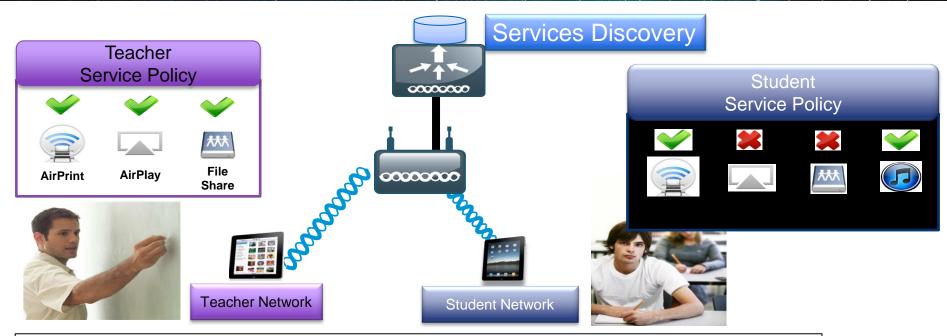


Service Discovery Gateway

On CT-5760(Centralised), the 3850 and 3650 series switches

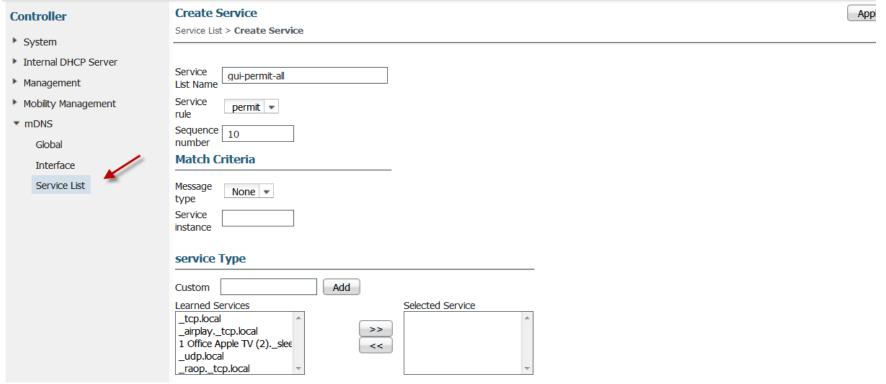
Both wired and wireless clients can benefit from switch or router based solution

Policy Capabilities



The mDNS Policy Profile is a list of allowed network applications. (i.e. AirPlay or Printing)

- The mDNS policy profile provides filtering to allow only certain WLANs, interfaces or users to access specific service types.
- Enforced per Interface (which include WLAN and VLAN groups)
- mDNS snooping needs to be enabled globally

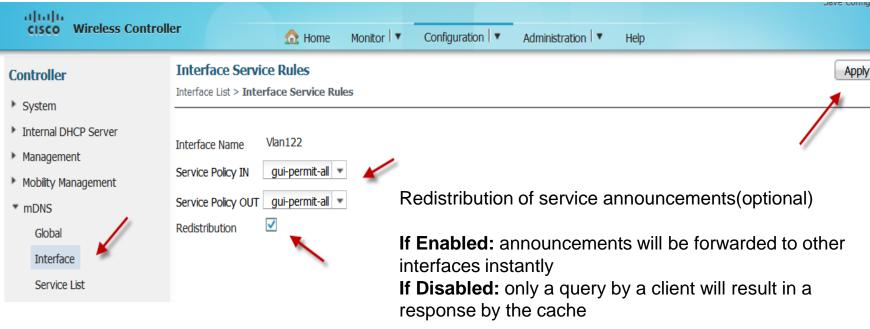


Service Discovery Gateway Policy Example for Education

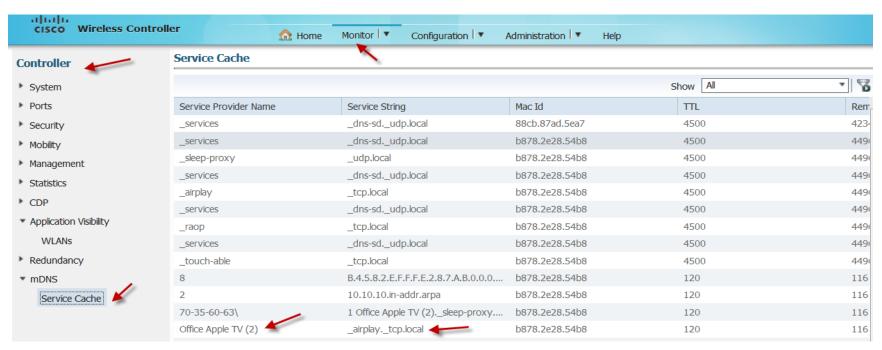
- Teachers are allowed to print, access the Apple TV and file shares.
- Students are allowed to print and share iTunes, but not access the Apple TV, or file shares.

Configuring Service Discovery Gateway-GUI Creating a Service List

Configuring Service Discovery Gateway-GUI


Enable mDNS snooping globally

Configuring Service Discovery Gateway-GUI

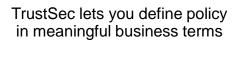

Applying Services to Interface

Monitoring of mDNS Services

List of mDNS services advertised by mDNS capable devices

Service Discovery Gateway Summary

- Both wired and wireless clients are supported
- 14K services on 5760 and 2.5K on 3650/3850
- Supported with Centralised and Converged Access mode
- Roaming and Guest Anchor support
- Easy to configure and manage from both GUI and CLI

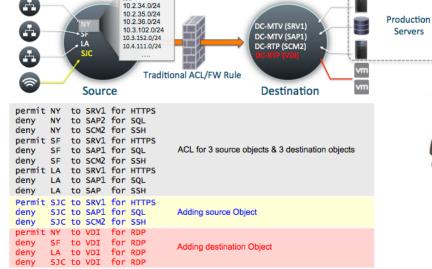

Agenda

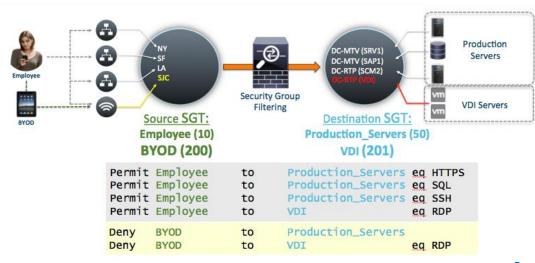
- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

TrustSec Security Group Access Overview

Translating Business Policy to the Network

Business Policy

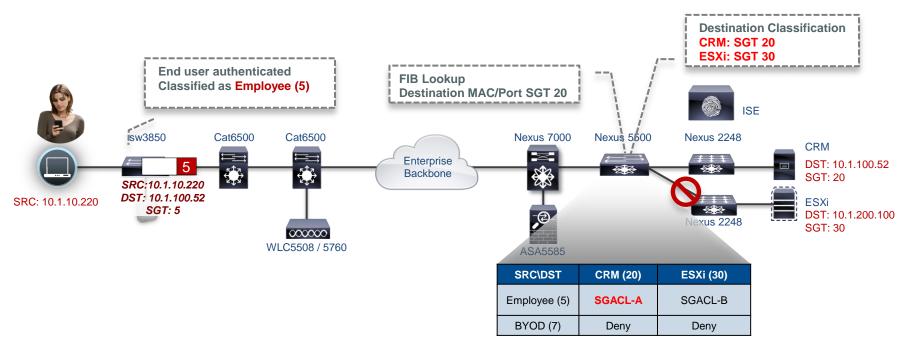

Destination Source	HR Database	Prod HRMS	Storage
Exec BYOD	X	X	X
Exec PC	X	\checkmark	X
Prod HRMS	\checkmark	\checkmark	X
HR Database	\checkmark	\checkmark	\checkmark



Clear ROI in OPEX

Traditional ACL / FW Filtering

Simplified Security Group Filtering



SGA Policy

	Destination SGT Source SGT	Public Portal (SGT 8)	Internal Portal (SGT 9) (SGT 4)		Production Servers (SGT 10)	
	BYOD(SGT 7)	Web	Web	No Access	Web File Share	
	Corp Asset (SGT 5)	Web SSH RDP File Share	Web SSH RDP File Share	Full Access	SSH RDP File Share	

SGT Assignment and Enforcement

Wireless TrustSec Support for Converged Access

Deployment Mode	Controller Platforms	TrustSec Support	Authentication	Release
Unified AireOS	2504, 5508 WiSM2	SXP(speaker mode)	802.1X	7.2 and above
Converged Access IOS	3850, 3650 5760	SGT, SGACL SXP (speaker / listener)	802.1X MAB WebAuth	IOS-XE 3.3.0SE Release

Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

802.11ac - The Gigabit Wireless Standard

What is 802.11ac?

- Next-generation 802.11 Wi-Fi specification "gigabit" wireless
- Backwards compatible with 802.11n and 802.11a
- Most efficient Wi-Fi standard to date
- Optimised for high bandwidth applications
- WFA certification ready for Wave 1

What Are the Features?

- Specifies a data rate up to 6.9Gbps per 5 GHz radio
- Max Data rate of 1.3Gbps in Wave 1 (phase 1)
- Operates in 5 GHz band only
- Enhanced channel bonding, modulation (256 QAM) and more spatial streams than 802.11n

What Are the Benefits?

Faster Throughput

2-3x on average of 802.11n

Greater Capacity

More clients utilising the resources of an AP

Broader Coverage

Robust connectivity & range. Fewer dead spots

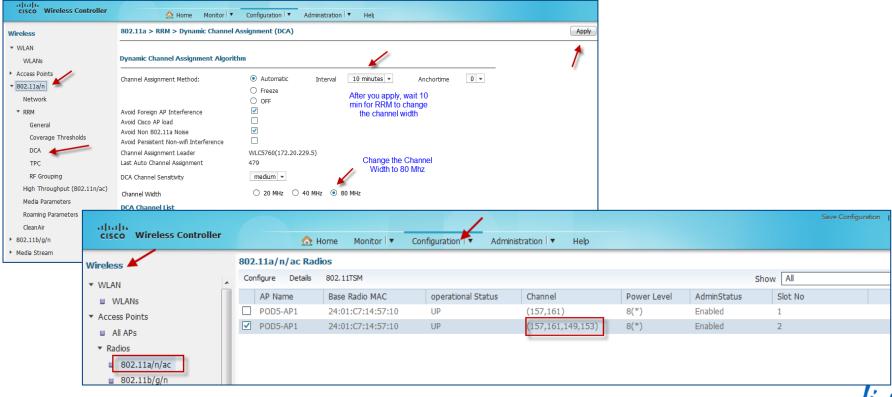
Longer Battery Life

On and off the Wi-Fi network faster, translates to less power draw and longer battery life

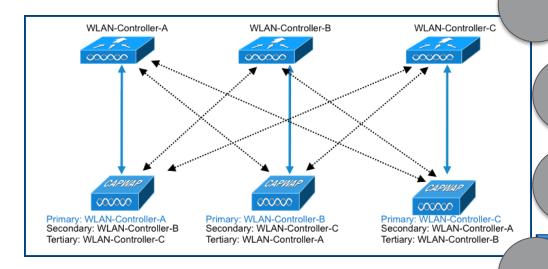
802.11ac Module for 3600 Access Point Series

- Field-upgradable 802.11ac module for the 3600 Series, enables a seamless migration to next generation wireless
 - No rip and replace of APs, power down, plug-in the module and go!
- 802.11ac Wave-1, 5 GHz Module
 - 1.3 Gbps PHY (80 MHz @ 3SS)
 - 3 Spatial Streams, 20/40/80 MHz channels, 256 QAM
 - Explicit Beam Forming support as per the 802.11ac specification
- AP3600 operates 3 active radios, 2.4 and 5 GHz integrated and the 802.11ac 5 GHz module
 - Supporting b/g/n on 2.4 GHz and a/ac/n on 5 GHz
- 18w of Power required for the 3600 with the 802.11ac Module installed
 - Power draw with 802.11ac Module exceeds 15.4 Watts (802.3af), and will require either Enhanced PoE, 802.3at PoE+, Local Supply or Power Injector 4

Next-gen AP3700 – with Modularity & Integrated 802.11ac


- 4x4:3 SU-MIMO Dual-band 2.4 and 5 GHz integrated radios with Modularity
- 802.11ac Wave 1 on the integrated 5 GHz radio
 - 1.3 Gbps PHY: 3 Spatial Streams, 20/40/80 MHz channels, 256 QAM
 - Explicit Compressed Beam Forming (ECBF) support as per the 802.11ac specification
 - 802.11a, .11n and .11ac clients supported on the integrated 5 GHz radio
- Modular architecture carried forward from the AP3600
 - WSSI Module is supported
- Requires ~15w of power at the AP Enhanced PoE or PoE+ for full functionality
 - Fits under 15.4w 802.3af by automatically down shifting RF arch to 3x3:3 on both 2.4 and 5
 GHz
- Antenna support
 - Support all the antennas available for the 3600, 2600 and 1600

Configuring 11ac : Channel Width



Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

5760 High Availability Recap

Primary/Secondary/Tertiary WLC defined on each AP

Primary and Secondary
Backup configuration with
Fast Heart Beat

Each WLC configured separately and has unique IP Address

With Primary Failure, AP goes in Discovery State and CAPWAP State Machine is restarted

5760 High Availability with APSSO

Two 5760 units can be stacked for 1:1 redundancy, using stack cables

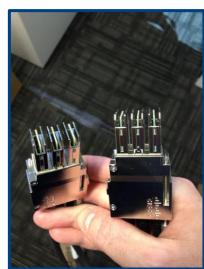
One 5760 elected as Active and the other becomes Hot-Standby

Bulk and Incremental Configuration sync

Redundancy supported both at Port level and System level

AP CAPWAP information sync. APs will not disconnect and continue to be associated to the controller

Significantly reduces network downtime



High Availability Connectivity on 5760

High availability is enabled using Cisco StackWise-480 technology in Full Ring Setup.

STA	.CK-T1-50CM=	Cisco StackWise-480 50cm stacking cable spare		
STA	.CK-T1-1M=	Cisco StackWise-480 1m stacking cable spare		
STA	.CK-T1-3M=	Cisco StackWise-480 3m stacking cable spare		

High Availability

WLC 5760-based MCs - How to Pair the Boxes

Recommended: power up the second unit only after a first 5760 is deployed

- Adding powered-on 5760 Unit (merging) causes stack to reload and elect a new Active.
- Use Controller# switch 1 Priority 15 on the first unit to prevent having the second unit become active and wipe out your config ...

Active Controller Election Process

5760 that is the current Active controller

5760 with highest stack member Priority Value

5760 with shortest Start-up Time

5760 with Lowest MAC Address

5760#switch 2 priority ? <1-15> Switch Priority

Verifying HA Pair Details

5760#show switch Switch/Stack Mac Address : 20bb.c0a2.4d00 - Local Mac Address Mac persistency wait time: Indefinite							
Switch#	Role	Mac Address	Priority	H/W Version	Current State		
* 1	Active	20bb.c0a2.4d00	1	AØ	Ready		
2	Standby	20bb.c0a2.4d80	1	AO	Ready		

By Default: The 5760 stack uses the MAC address of the active 5760.

Persistent MAC address feature: time delay before the stack MAC address changes to new Active

```
5760(config)#stack-mac persistent timer ?
<0-0> Enter 0 to continue using current stack-mac after master switchover
<1-60> Interval in minutes before using the new master's mac-address
<cr>
```


Verifying Stack Port Details

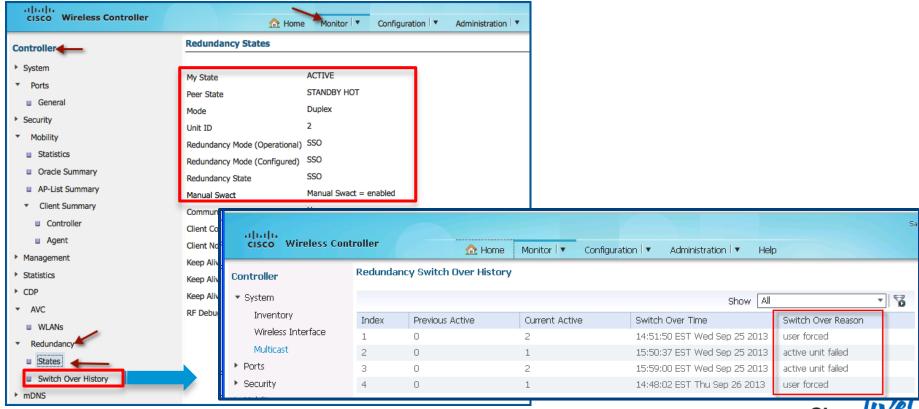
5760#show switch stack-ports summary								
Sw#/Port# opback	Port Status	Neighbor	Cable Length	Link OK	Link Active	Sync OK	#Changes to LinkOK	In Lo
 1/1	ок	2	50cm	Yes	Yes	Yes	3	No
1/2	ок	2	50cm	Yes	Yes	Yes	2	No
2/1	ок	1	50cm	Yes	Yes	Yes	1	No
2/2	OK	1	50cm	Yes	Yes	Yes	2	No

- No No neighbour detected. Cannot send traffic over this link.
- Yes Neighbour detected. Port can send traffic over this link.

nal.

port is Disabled.

Verifying Redundancy States

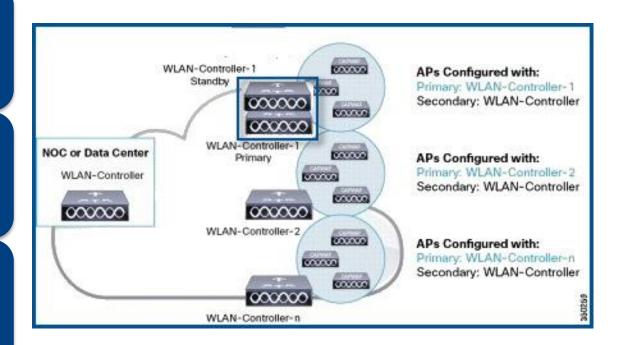

```
5760#show redundancy states
         my state = 13 -ACTIVE ◆──
      peer state = 8 -STANDBY HOT
            Mode = Duplex
          Unit ID = 1
  Redundancy Mode (Operational) = SSO
   Redundancy Mode (Configured) = SSO
               Redundancy State = SSO
                      Manual Swact = enabled
   Communications = Up
     client count = 78
   client notification TMR = 360000 milliseconds
           keep alive TMR = 9000 milliseconds
          keep alive count = 0
      keep alive threshold = 9
             RF debug mask = 0
```

```
5760-stby#show redundancy states
         my state = 8 -STANDBY HOT ←
       peer state = 13 -ACTIVE
            Mode = Duplex
         Unit ID = 2
 Redundancy Mode (Operational) = SSO
   Redundancy Mode (Configured) = SSO
               Redundancy State = SSO
                      Manual Swact = cannot be initiated
  Communications = Up
     client count = 78
  client notification TMR = 360000 milliseconds
            keep alive TMR = 9000 milliseconds
         keep alive count = 1
     keep alive threshold = 9
             RF debug mask = 0
```


APSSO Web UI

BRKEWN-2022

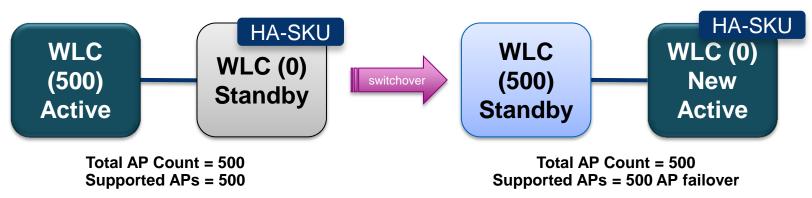
APSSO Failover


```
5760#redundancy force-switchover
System configuration has been modified. Save ? [yes/no]: yes
                                                                                     System Redundancy
Building configuration...
Compressed confiquration from 6134 bytes to 3275 bytes[OK]This will reload the a
                                                                                     Models:
ctive unit and force switchover to standby[confirm]
Preparing for switchover..
                                                                                     Manual Switchover
*Sep 23 22:03:39.059: %RF-5-RF RELOAD: Self Reload. Reason: Admin CLI
                                                                                     Software Failure Switchover
*Sep 23 22:03:44.298: %SYS-5-SWITCHOVER: Switchover requested by console. Reason
 Admin CLI.
KMon Sep 23 22:03:44 2013> Message from sysmgr: Reason Code:[3] Reset Reason:Res
                                                                                     Power Failure Switchover
et/Reload requested by [console]. [Reload command]
umount: /proc/fs/nfsd: not mounted
Marconi Watchdog: device file closed unexpectedly. Will not stop the WDT?
Unmounting ng3k filesystems...
Warning! - some ng3k filesystems may not have unmounted cleanly...
Please stand by while rebooting the system...
                                              Metrics
                                                                                  Time
Restarting system.
                                              Failure Detection
                                                                                  In the order of 50 ms
                                              Reconciliation Time (Standby becoming Active)
                                                                                  In the order of 1020 millisec
```

5760 APSSO Hybrid with N+1 High Availability

Both Active and Standby combined in SSO setup are configured as primary.

On failure of Active and Standby, APs will fall back to secondary and further to tertiary controller.


N+1 HA can be deployed with hybrid of 5760 and CUWN controllers. But APs will reload when failing over

Licensing for APSSO with HA-SKU

- Total capacity of the SSO Stack is 1000 APs
- MC keeps track of the cumulative AP Count and in-use AP licenses
- Not allow more APs than cumulative AP count licenses available in the SSO stack

Agenda

- What is Converged Access?
- Converged Access Platforms Overview
- Wireless Deployment Options
- The new Converged Access Mobility Architecture
- How to deploy a Converged Access network?
- IOS-XE 3.3 Release Features
 - Application Visibility
 - Service Discovery Gateway
 - TrustSec
 - 802.11ac Support
 - High Availability- AP SSO
- Bringing Together Wired and Wireless

Bringing Together Wired and Wireless

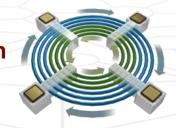
How Are We Addressing This Shift?

Control plane functionality on NG Controller

(also possible on upgraded 5508s, WiSM2s for brownfield deployments, or NG Converged

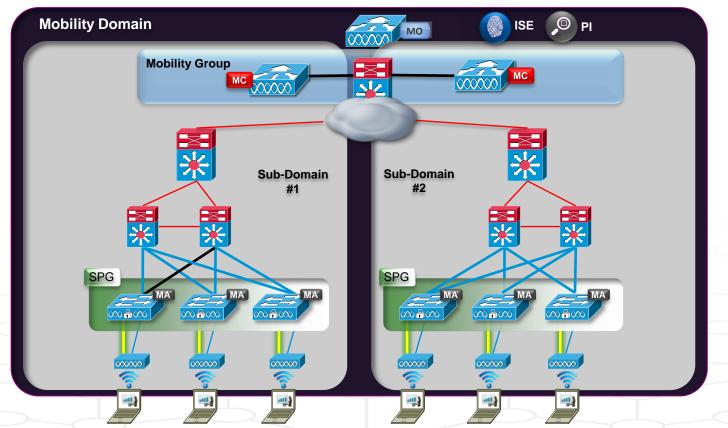
Controller

Data plane functionality on NG Switches


(also possible on NG Controllers, for deployments in which a centralised approach is preferred)

Next-Generation WLAN Controller (5760)

Next-Generation Switches (Cat 3850/3650)


Enabled by Cisco's strength in Silicon and Systems ... **UADP ASIC**

An Evolutionary Advance to Cisco's Wired + Wireless Portfolio, to address device and bandwidth scale, and services demands

Bringing Together Wired and Wireless

How Are We Addressing This Shift?

Cisco
Converged
Access
Deployment

An Evolutionary
Advance to Cisco's
Wired + Wireless
Portfolio, to address
device and bandwidth
scale, and services
demands

Converged Access – Deployment Guides

For additional deployment information, check the deployment guides...

WLC 5760 Deployment Guide:

http://www.cisco.com/en/US/docs/wireless/technology/5760_deploy/CT5760_Controller_Deployment_Guide.html

Catalyst 3850 Deployment Guide:

http://www.cisco.com/en/US/prod/collateral/switches/ps5718/ps12686/deployment_guide_c07-727067.html

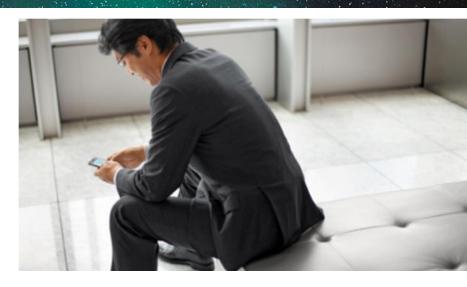
IOS-XE HA Deployment Guide:

http://www.cisco.com/en/US/docs/wireless/controller/technotes/5700/software/release/ios_xe_33/5760_HA_DG_iosXE33.pdf

AVC Deployment Guide:

Ciscolive!

Q & A


Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations.

www.CiscoLiveAPAC.com

#