TOMORROW starts here.

11 11 11 CISCO

Cloud and DC Architecture Evolution for Service Providers

BRKSPS-2640

Rada Stanic Consulting Solutions Architect

- Traditional SP DC Architecture VMDC
- Transition to Virtual Services Architecture
 - What is it and what are the advantages ?
 - CSR1000v and Use Cases
 - Cisco InterCloud Hybrid Cloud Enabler
 - Cloud Orchestration Framework
- SDN / NfV in Multi-tenanted SP DC
 - Enabling Technologies and Elements (vPE and ESC)
 - Combining the benefits of DC and WAN
- Conclusion

Cisco (ive,

Traditional SP DC Architecture

VMDC – Cloud Blueprint for the Unified Data Centre

Foundation for Cloud Applications and Services

Virtualised Multiservice Data Centre

The Challenge - Predictably Scale Data Centre

Key Factors to Consider

- L2 Scale Virtual Machine Density, VMNics per VM, MAC Address Capacity
- Cluster Scale, ARP Table Size, VLAN scale, Port Capacity, Logical Failure Domains, L2 Control Plane
- L3 Scale BGP Peering, HRSP Interfaces, VRF Instances, Routing Tables and Convergence, Services
- **Resource Oversubscription –** Network Compute and Storage Oversubscription, Bandwidth per VM

- Optimise CAPEX savings while maintaining SLAs
- Predictable performance and scale based on building blocks
- Effective way to add separate application environments

The Challenge - Ensure High Availability

- **Redundant** end to end links, nodes and paths
- L2 Redundancy –
 1vPC+, ECMP, Port-Channels 2 MEC,
 3MAC-pinning
 L3 Redundancy -
- L3 Redundančy HSRP, NSF, NSR, LDP sync, MPLS graceful restart
- Compute Redundancy -UCS end host mode, (N1KV and MAC-pinning, Active/Standby Redundancy, Intra-Cluster HA)

- **Storage Redundancy 6** FC port channeling, multi-pathing software from VMware or SAN vendor
- Services Redundancy –
 ASA, Load Balancer redundancy (portchannels, vPC, vPC+)
- Routing Protocol Redundancy - BGP, OSPF

- Maximise infrastructure uptime
- Comprehensive end to end architecture

The Challenge - Service Levels and Multimedia Apps

- Define low latency traffic classes in the multimedia service tier (i.e., VoIP bearer and video conference) are characterised by three metrics bandwidth, delay and availability.
- Support QoS across hybrid public/private domains

- Traffic Classification and Marking - It is a general best practice to mark traffic at the source-end system or as close to the traffic source as possible in order to simplify the network design.
- Hierarchical QoS for Multi-Tenancy
- Queuing, Scheduling, and Dropping – accounts for differences in queuing structures
- Shaping and Policing

The Solution

 Quality of Service

- Supports applications with differing latency requirements
- Provides end to end QoS
- Supports QoS across hybrid public/private domains

Cloud Consumer Models - Validated Tenancy Models

- Quickly and securely onboard similar tenants
- Covers different levels of network services for a variety of needs
- Addresses varying security, QoS and other requirements
- Solutions available to automate the process

VMDC 2.2 PoD Construct

Component	SW Versions
ASR9000	XR 4.1.0
ASR1006	XE 3.4.0 15.1(3)S
Nexus 7010	NXOS 5.2.1
ASA5585-60X	8.4.2
ACE30	A 4.2.1
Cat 6509	IOS 12.2.33 SXJ
UCS 6140, B200	1.4(2b)
VSG	4.2(1)SV1(2) - VNMC: 1.2(1b)
Nexus 1000V	NXOS 4.2.1 SV1(1.4a)
VMware	vSphere 4.1 U1, ESXi
MDS9513	NXOS 5.0.4d

VMDC 3.0 with FabricPath

Simplified Network, Reducing Operating Expenses

- Switch addresses are assigned automatically
- A single control protocol
- Easily expanded in a plug and play manner
- Non-FabricPath switches can still be without STP

Reliability Based on Proven Technology

- Cisco FabricPath is built on top of IS-IS
- Loop prevention and mitigation is available in the data plane

Efficiency and High Performance

- 2.56 Tbps of bandwidth between switches (16-way ECMP combined with 16-port 10-Gbps PortChannels)
- Lower Latency than Spanning Tree based solution
- Cisco FabricPath enables massive scalability of the L2 domain

VMDC 3.0 with FabricPath Design Options and Criteria

Design criteria included:

- Available FabricPath modules:
 - M1/F1 mixed VDC
 - M1/F2 split VDC
- VLAN scale: constrained by HSRP, GLBP
- MAC scale
- ARP learning rate
- Conversational MAC address learning
- Port Density
- Forwarding Paths
- Port-channel vs. single links
- VPC, VPC+ options
- QoS
- Distance (intra-PoD)

Cisco Public

Private Cloud: Major Architectural Transitions Addressing the need for Agility

Deployed Architectures

Technologies:

- Physical services
- Fabric-based tenant segmentation
- L3 VPN to Aggregation
- Stovepipe orchestration

Characteristics

- Finite-scale
- Complex orchestration
- Limited flexibility and agility

Emerging Architectures

Enabling Technologies:

- Virtualised Services
- Overlay-based consumer segmentation
- Virtualised Routing
- Abstracted network orchestration

Characteristics

- High-scale
- Simplified orchestration
- Flexible and agile

Cisco live,

Transition to Virtual Services Architecture (VSA)

VMDC Evolution to VSA

Virtual Services Architecture: Architectural Highlights

- Overlay networking VXLAN for scalable tenant segmentation and intra-DC L2 extension
- Virtual services with single service instance per tenant
- RAAS virtual router for tenant routing and zonebased firewalling
- Abstracted network control via Prime Network Services Controller

Virtual Services Architecture: Architectural Highlights

- End to End differentiated SLA Support and Application Visibility
 - NBAR2 on CSR for application-based differentiation
 - Performance Agent on CSR for Round Trip Time reporting
 - vNAM Network Analysis
- Application Performance Tuning
 - vWaaS for end-to-end application optimisation

Cisco Public

VSA 1.0 Intra-DC End to End Physical Topology

End to End System View

VSA – Supported Containers

- Predefined containers provide examples for different types of deployments
- Automated provisioning and management logic for each container type is pre-defined in the Management and Orchestration software
 Cisco

© 2012 Cisco and/or its affiliates. All rights reserved BRKSPS-2640

Expanded Gold Container

- Enterprise-class tiered application support with in-depth security.
- "All Virtual" network service implementation

Expanded Gold Container With CSR IOS Zone-based Perimeter Firewall

- Dedicated per-tenant, rather than dedicated logical context on shared physical firewall
- Greater flexibility in terms of policy administration (SP Admin or tenant user)
- Per-tenant granularity of policy control
- Zones based on logical interfaces

Silver Container

- Three routed segments for N-tiered application support
- Load balancer for application HA

Sample Bronze Container

L3 VPN Single routed segment Raw container for tenant resources Assumes less mission-critical Customer VRF 12 applications eBGP or static Fabri Possible use case: tenant-managed С network resources vCE=CSR1000v Zone 1 Zone N Back-end Zone 1000v + VPATH

٠

٠

٠

٠

Zinc Container

- At ASA1kv, 1 outside (statically routed) interface. Could be to L3 VPN but in this example, only the Internet/Public use case is shown, reserving the vCE model to the CSR
- 1 inside interface...single subnet with the VSG optionally providing N-tiered application zoning. As with any use of the VSG, there is the possibility to create subzones (for additional policy in front-end or back-end zones)
- vWaaS and vNAM are also options

application or business requirements.

VSA 1.0 - Critical System Parameters

- Max. Tenants per PoD (ASR9k PE pair): 5000
- Tenancy Scale Validation Objective per PoD for 1.0: 2000*
 - 50 tenants configured in SUT compute layer
 - Simulated tenant sessions to stress the system end to end (at PE, transiting FabricPath, and in port capacity context at N1KV DVS)

*Note: only 2000 max transit VLANs possible in NX-OS 6.1, per FabricPath domain. This number doubles to 4000 in NX-OS 6.2 (now shipping). 4000 to be validated in VSA 1.0.1.

Ciscolive!

CSR1000v and Use Cases

Cisco Cloud Services Router (CSR) 1000V

Cisco IOS Software in Virtual Form Factor

IOS XE Cloud Edition

Selected Features of IOS XE primarily for Cloud Use Cases

Infrastructure Agnostic

Server, Switch, Multi-Hypervisor (ESXi, KVM, Xen, AMI)

Single-tenant WAN Gateway

Small Footprint (reducing from 4 vCPU to 1), Low Performance

Term and Usage based Licenses

- Elastic Capacity (10 Mbps to 1 Gbps* Throughput, 2 to 16 GB RAM)
 Programmability
- RESTful APIs (leverages OnePK) for Automated Management

The Current WAN Landscape

The Evolving WAN Landscape – with CSR 1000V

CSR 1000V Benefits

Any-to-Any Connectivity

Tenant Scalability

Traffic Redirection/ Control

Integrated Services

BRKSPS-2640

Licensing Elasticity

CSR as a VXLAN Gateway

Secure VPN Gateway

Benefit: Scalable, Dynamic, and Consistent Connectivity with the Cloud

Enterprise

Challenges

- Inconsistent Security
- High Network Latency
- Limited Scalability

Solutions

- IPSec VPN, DMVPN, EZVPN, FlexVPN
- Routing and Addressing
- Firewall, ACLs, AAA

- Direct, Secure Access
- Scalable, Reliable
 VPN
- Operational Simplicity
 Cisco

Traffic Control and Management

Benefit: Comprehensive Networking Services Gateway in the Cloud Enterprise

Challenges

- Response Time of Apps
- Resource Guarantees
- Resilient Connectivity
 Solutions
- AppNav for WAAS
- QoS Prioritisation
- HSRP VPN Failover

- Rich Portfolio of Network Features and Services
- Single Point of Control

DC to Cloud IP Mobility – Hybrid Cloud

Benefit: Simplified Application Deployment to the Cloud

Challenges

- Simple, Fast, Transparent Application Onboarding
- Consistency with DC

Solutions

- LISP for VM Mobility
- Routing
- NAT, DHCP

Benefits

Simpler App
 Integration

Cisco Public

- Dynamic infrastructure
- Consistent Management
DC to Cloud L2 Extension

Nexus 1000V InterCloud + CSR – Hybrid Cloud

BRKSPS-2640

© 2014 Cisco and/or its affiliates. All rights reserved.

vCPE On-Premise – Enabling NfV

- L3 CPE functions delivered on a general purpose CPU platform (e.g. Cisco UCS)
- Local loop typically assumed to be Ethernet based
- Virtualised services (e.g. vWAAS, ASA 1000V) replace appliances for CPE functions

vCPE Off-Premise

- CPE functions moved into the SP PoP/ Cloud
- Off-premise CPE can be co-located in SP Edge PoP or centralised in Cloud DC
- L2 switches deployed on-premise

Ciscolive!

Cisco InterCloud – Hybrid Cloud Enabler

Hybrid Cloud Definition

InterCloud Supports Key Hybrid Cloud Use Cases

Common Peak Workloads

Private Cloud

VPC/Public Cloud

Dev/Test

Dev/Test Application across Private and Virtual Private Cloud

Bring Back Workload for Production Scale

Shadow IT Control

Providing Rapid Access to Hybrid Cloud Capacity

IT in Control of What and Where Applications Can Be Deployed

Capacity Augmentation

Bursting from Private Cloud to Virtual Private or Public Cloud for Peak Workloads

No Change to Application, Networking and Security

Disaster Recovery

Use Public Clouds for Backup and Disaster Recovery

Securely Extend DC with Consistent Policies

Cisco's Hybrid Cloud Approach

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco InterCloud - Secure Workload Mobility

Open: Freedom to place workloads across heterogeneous Private and Public Clouds Secure: Workloads in public clouds as a secure extension from private cloud **Bi-directional:** Unified management and networking to move workloads across clouds

Cisco InterCloud Integration Models

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco InterCloud Value Proposition for Businesses

Ciscoliv

Cisco InterCloud Architecture

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco InterCloud Architectural Details

InterCloud Secure Fabric Key Features

Cisco InterCloud Director Features

InterCloud Provider Enablement Platform Features

© 2014 Cisco and/or its affiliates. All rights reserved.

00

amazon

InterCloud Deployment Models

- Enterprise procures and deploys software on-premise
- Choice of InterCloud enabled provider clouds
- No extra provider charge for InterCloud

- Provider procures and deploys software at enterprise
- Enterprise controls workload placement
- Enterprise pays provider for InterCloud service

Cisco

Ciscolive!

Cloud Orchestration Framework

Cisco Cloud Management Solutions

Intelligent Automation for Cloud 4.0 Network Automation for VSA

What's New in Cisco Intelligent Automation for Cloud 4.0 Beyond IaaS

Integration with **CISCO UCS DIRECTOR** for virtual + physical infrastructure management

New SELF-SERVICE PORTAL AND SERVICE CATALOG enhancements for IT as a Service

APPLICATION STACK ACCELERATOR PACK for DevOps, with native Puppet + Chef support

HYBRID CLOUD management support across Amazon, vCloud, and OpenStack

NETWORK SERVICES AUTOMATION with Cisco Prime Network Services Controller

Advanced **PRICING AND SHOWBACK** support for improved governance and control

Enhanced multi-tenant and **MULTI-ORGANISATION** support for SPs and large enterprises

System Design Overview

IaaS/PaaS: What do End Customers Want?

DevOps Solution Accelerator Stack Designer

- GUI-based configuration of complete application stacks
- TOSCA-based
 - Graphically describes interoperability of all application stack components
- Puppet or Chef codelets behind GUI icons

Cloud Service Assurance for VMDC - Architecture

VMDC / VSA Benefits Summary

- VMDC is the Cisco validated reference architecture for Public/Private/Hybrid Cloud Infrastructure
- Multiple VMDC phases and tenancy models evolving with new technologies/platforms and customer needs
- Multi-tenancy, service differentiation, tiered security services, virtualisation and automation are key for cloud deployments
- Cisco CVDs for cloud infrastructure, orchestration and assurance enable quicker adoption and deployment of complex technologies for end-end solutions
- Out-of-Box Orchestration support for different VMDC designs and tenancy models
- Use these as blueprint, change as necessary to design/deploy your own Clouds
- Do not over complicate Cloud Infrastructure designs it will make Orchestration complex!

Ciscolive!

SDN / NfV in Multi-tenanted SP DC

Generalised Cloud Orchestration Model

• From monolithic approach in the past ...

Network Function Virtualisation

Cisco Cloud Service Management Orchestration Service Orchestration Portal / UI / API Workflow Catalog Service Control Service Assurance Apps Apps Apps Apps Apps Apps Resource Management **Network Control** VM/Storage Control Virtual Services Virtual Network Physical Network Compute / Storage Infrastructure

BRKSPS-2640

© 2014 Cisco and/or its affiliates. All rights reserved.

Ciscoliv

NfV Example Workflow

- 1. Request received
- 2. Catalog item
- 3. Defines workflow
- 4. Workflow calls Service Creation to set up service VMs
- 5. Service Creation calls to Openstack to set up VMs
- 6. Openstack sets up VMs

Cisco Public

- 7. Workflow calls to Service Config function to set up services
- 8. Service Config configures services
- 9. Workflow calls DC network controller
- 10. DC network controller configures overlay network
- 11. Service monitoring tracks availability and performance of service
- 12. Service Creation manages service elasticity and high availability

Cisco Cloud Service Orchestration - Framework

Cisco

Enabling Technologies and Elements (vPE and ESC)

End-to-End Dynamic Provisioning and Monitoring of Virtualised Services

What Services?

.. Many familiar network services functions have already been developed for virtualised implementations

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco

Elastic Services Controller - Example

<?xml version="1.0" encoding="UTF-8"?> 2 <service-request name="46-swire" version="1.1"> // This is the data that is passed down from the // GUI to the FEDC-Controller when a specific service // is being requested as part of the START_SERVICE call. // The GUI provides the request-id of this request which it // will use to uniquely identify the service in the // fedc-controller-status XML returned from a GET_STATUS call <parameter request-id="737448483823912"/> <parameter anycast-address="2607:f0d0:1000:51::1"/> <parameter internet-address="171.29.50.1"/> <parameter elastic-mode="true"/> <parameter min-instance="2"/> <parameter max-instance="10"/> <parameter standby-gueue-depth="3"/> <parameter upper-threshold-load="75"/> <parameter lower-threshold-load="25"/> /service-requests

- <service-request> is generated and sent to the Services Controller which then creates the active VMs and hot-standby VMs
- 2. Service starts and reports application stats to the Service Controller STATUS=OK
- 3. Load increases and VMs are getting overloaded STATUS=OVERLOAD
- Services Controller activates 3 of the "hot-standby" VM and adds them to the running service causing the load on all VMs to decrease below the threshold
- 5. The Services controller backfills the "hot standby" queue by booting 3 new VMs but not activating them

Service Lifecycle Management - Monitoring & Elasticity

© 2014 Cisco and/or its affiliates. All rights reserved.
Service Provide Cloud Offering Unique end-to-end Customer Experience

Data Centre Evolution Traditional DC

Cisco Public

vPE DC

Solution Interdependencies

Need an Architectural Approach

- Multiple ways of addressing each problem
- Interdependencies between options
 - One will impact another
- Need an architectural approach to solve the problem rather than point solutions

Data Centre Fabric – The Underlay Network

vPE Intra-Segment Forwarding

vPE Inter-Segment Forwarding

vPE Network Function Virtualisation

vPE L3VPN, L2VPN & Internet Access

vPE Services in a Chain

vPE Multi-Tenancy, Varied Topologies

vPE Control Components

vPE Control Components

BGP Signalling in the WAN

Use Case 1: laaS / Virtual Private Cloud

Use Case 2: NFV & Services Chaining

Use Case 3: Combined VPC and NFV Service Chaining

Components of Cisco vPE Solution

Virtual Systems Operations Centre (vSOC) Extensible Service Orchestrator

Virtual PE Forwarder (vPEF) Light weight forwarding element per Server

NfV Services

vASA, CSR1000v for NAT and DPI & RaaS, GI-LAN future

DC WAN Gateway

ASR9k, Nexus 7k - Physical PE (DC WAN Gateway)

vPE-F Vector Path Processing (VPP)

Underlying Technology Differentiator

- vPE-forwarder is based on Cisco's VPP technology
- What is Vector Packet Processing?
 - Highly optimised packet processor for general-purpose CPUs
 - Very fast
 - Constructs super frames of packets and processes them in one shot exploits temporal locality of application flows. Benefits from I-cache, Dcache hits.
 - Direct PCI pass-through allows send/receive packets with zero operating system overhead
 - near line rate processing on 10G interfaces
 - 64-bit, multi-threaded
 - Portable
 - VPP is a user space process fault protected & <u>easy</u> <u>upgrades</u>
 - Multi-tenant forwarding contexts for IPv4 and IPv6
 - Shipping on several Cisco products (ASR 9000)
- Complete forwarding stack (as opposed to Intel DPDK developer framework)

vSOC User Experience

- Single portal for customers to login and provision their network and application VMs
- Each customer can create multiple topologies
- Traffic for a topology could come from Internet, existing L3VPN network, L2VPN network
- Topology composed of multiple zones
- Inter zonal traffic subjected to one or more services (FW, NAT, DPI, Load Balancer)
- Ability to provide pre-packaged end application services such as Web Server, Video Server, Mail Server, Database Servers, Hadoop Cluster, etc
- Design template library and custom network topology templates for provisioning ease.
- BYOS Ability for customers to bring their own service appliances

Cisco vPE Key Solution Highlights

End to end Solution offering from Cisco	Based on Open, standards-based interfaces	Highest performance virtual forwarder	Virtual forwarder in a VM isolates network failure domain from compute
Overlay architecture independent of underlying fabric	Self Service model and automated network config enables zero touch provisioning	Service configuration integrated with Solution	Elastic Services Management

Ciscolive!

Combining the Benefits of DC and WAN

WAN/Analytics Closed-Loop

- 1. Multi-domain Feeds
- 2. Correlate and determine network policy action needed
- 3. Submit "Network Policy Action" via PCE API
- 4. Network Policy Action programmed to network
- 5. Visualise Feedback Loop

Subscriber

WAN Orchestration Bandwidth Calendaring

PCE & Demand Engineering, ESC

WAN Orchestration controller collects topology, state and utilisation info from packet network

3 h

On behalf of user, BW Calendaring App requests a Network path to DC Service A from location attached to Router D

5

Service is available at the required Calendar interval

WAN Orchestration controller discovers available resources and calculates optimal path and returns result to the app

BRKSPS-2640

© 2014 Cisco and/or its affiliates. All rights reserved.

Bandwidth Calendaring: Example DCI

© 2014 Cisco and/or its affiliates. All rights reserved.

Elastic Cloud Services (NfV) Dynamic Scaling of Bandwidth and Services

Conclusion

- Demand for greater operational efficiencies, quick tenant onboarding and new services will drive "Virtual Services Architecture" adoption
- "Hybrid Cloud" as a service will be the key enabler for the broader cloud adoption
- SDN and NfV adoption will be driven by specific use cases
- Key architectural principles must be open, modular and extensible
- Orchestration and automation will be the key enabler for successful cloud based services

Ciscolive!

Q & A

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site <u>www.ciscoliveaustralia.com/mobile</u>
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations. www.CiscoLiveAPAC.com

#